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Abstract—With the development of communication technology, 

patterns of communication signals have become more complex 

and diverse. Therefore, the technology of identifying the 

modulation mode of the communication signal in transmission, 

especially the modulation recognition technology based on 

artificial intelligence, has become an extremely important 

technology in the communication field. For a variety of 

modulation methods, the traditional method is extremely 

complicated to implement, and cannot meet the requirements of 

accurate identification in a short time. In order to increase the 

speed and reduce the redundancy, this paper proposes a method 

based on the convolutional autoencoder and the residual 

network which can realize the denoising, identification and 

classification of different modulated signals. This method 

generates ten different modulation types of signals under each 

signal-to-noise ratio. After the model is trained, the data set is 

input to the convolutional autoencoder to denoise, and then the 

data set denoised by the autoencoder is input to the residual 

network to obtain the classification and recognition accuracy of 

each modulation type. And an average recognition rate of 92.86% 

was achieved at -2dB. 

Keywords: Time-frequency diagram; Convolutional autoencoder; 

Residual network; Modulation recognition 

 

I.  INTRODUCTION 

With the rapid development of communication 
transmission, signal processing, pattern recognition and other 
fields, automatic modulation classification (AMC) [1]-[3] has 
become one of the most important technologies in the field of 
communication transmission. With the development of 
communication equipment, the transmission speed of signals 
has become more and more rapid and the signals have become 
more and more difficult to identify. This is a very headache 
for technicians engaged in traditional modulation recognition. 
Therefore, how to achieve fast and accurate recognizing the 
modulation type of communication signals has been a hot 

topic in recent years. In the civil field, in order to ensure the 
legal and orderly conduct of communications, modulation 
recognition technology is widely used in non-professional 
electromagnetic spectrum monitoring [4] and management; In 
the military field, if the detected electromagnetic signal can 
accurately and quickly identify the modulation type used by 
the opponent’s communication, not only can the function and 
complexity of the opponent’s communication equipment be 
judged, but also the information transmitted by the opponent 
can be estimated, then take the lead in the electronic warfare 
[5]. 

II. LITERATURE REVIEW 

There are many traditional modulation recognition 
methods, and they can be roughly divided into maximum 
likelihood hypothesis [6] and pattern recognition [7]. The 
principle of traditional modulation recognition can be divided 
into three parts: signal preprocessing [8], feature extraction [9] 
and classification and recognition [10]. Signal preprocessing 
includes carrier synchronization, frequency down conversion, 
noise suppression, and estimation of parameters such as 
signal-to-noise ratio (SNR), symbol period, and carrier 
frequency; Feature extraction is the most important part of 
modulation recognition. The pre-defined characterization 
signal is extracted from the data, and the characteristics of the 
modulation type are selectively extracted from the 
characterization signal. This process is to extract the feature 
parameters, and the feature extraction includes analysis 
methods in time domain[11], frequency domain[12], and 
transform domains [13]; Classification and recognition is to 
select and determine the appropriate decision rules and 
recognition classifiers on the basis of extracting the feature 
parameters.  

However, the traditional modulation recognition process 
requires cumbersome feature extraction, and the generated 
manual signal [14] has serious uncertainties, making the 
traditional method not suitable for complex communication 
environments. As a result, the generalization performance and 
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anti-noise performance of traditional modulation recognition 
technology are poor. Therefore, the method based on deep 
learning has become a more common method to identify the 
modulation type of communication signals. There are many 
ways to apply deep learning to the field of modulation 
recognition, for example, based on the Inception network can 
improve the convergence speed and expand the receiving 
domain [15]. Under low SNRs, adopting the method based on 
capsule network [16] can improve the accuracy of modulation 
recognition; In addition, the image-based signal recognition 
method is also a commonly used method in deep learning. The 
principle is to convert the signal into a time-frequency 
diagram [17] or constellation diagram [18], [19], and then 
input to the convolutional network. For example, the use of 
graph convolutional network (GCN) [20] method for signal 
modulation recognition can obtain higher recognition 
accuracy than other convolutional neural networks (CNN). 
Similar to the method of GCN, this paper proposes a method 
to convert the modulated signal under each SNR into a time-
frequency diagram through time-frequency transformation. 
The time-frequency diagram is used as the identification 
medium, and the convolutional autoencoder (CAE) is used to 
denoise. 

III. PRINCIPLES OF METHOD  

This section presents the model of the CAE and the model 
of the residual network. 

A. Time-frequency Diagram 

First do Fourier transform of the simulated signal, and then 
use time as the horizontal axis, frequency as the vertical axis, 
and use color to indicate the amplitude to draw a spectrogram. 
A picture contains the frequency and amplitude of the signal 
changes over time, so it is also called "time-frequency 
diagram". Time-frequency diagram is one of the very 
common ways to analyze signals. After the signal is converted 
into a two-dimensional color image, the relationship between 
frequency and time can be observed in a more intuitive way. 

The conventional Fourier transform cannot express the 
frequency components at any time. In order to make a 
comprehensive analysis, a time-frequency analysis method is 
usually used to transform a one-dimensional time-domain 
signal into a two-dimensional time-frequency plane. There are 
many methods of time-frequency analysis, such as: 
spectrogram, Short-time Fourier Transform (STFT), Wigner-
Ville Distribution (WVD), Pseudo Wigner-Ville Distribution 
(PWVD), Smoothed Pseudo Wigner-Ville Distribution 
(SPWVD), etc.

 

   
 (a) WVD                  (b) PWVD               (c) SPWVD 

  
     (d) STFT            (e) spectorgram 

Figure 1. Time-frequency diagrams generated by various time-

frequency transformations 

WVD is a typical quadratic transform, which is defined as 
the Fourier transform of the signal instantaneous correlation 
function, reflecting the instantaneous time-frequency 
relationship of the signal. Because there is no window 
function involved in WVD, there is no restriction between the 
time domain and the frequency domain in WVD, so the 
resolution is very high. On the other hand, since there is no 
window function in WVD, it is susceptible to interference 
from cross-terms. Fig.1 shows the time-frequency diagrams 
generated by several commonly used time-frequency 
transformations under the same conditions. It can be clearly 
seen from the figure that compared to WVD and PWVD, 
SPWVD has a better suppression effect on cross terms. 

The design purpose of PWVD is to suppress cross-term 
interference, introduce parameter optimization in WVD, and 
construct a matching transformation kernel according to the 
selection of parameters. If the transformation kernel and the 
signal model are relatively consistent, better time-frequency 
concentration can be achieved. The values of WVD and 
PWVD do not satisfy the energy positiveness in the 
conventional sense. In order to achieve the positive energy 
distribution characteristics, the SPWVD can be obtained by 
convolving WVD with a smoothing function. Its distribution 
definition is: 

  dudeuxutxhugftxSPWVD fj
hg

2
*

, )2/t)2/()()(),;( −−+−=   （     

(1) 

Because there is a window function g (u) in SPWVD for 
smoothing in both time and frequency, it has a better effect of 
eliminating cross terms. Its time-frequency characteristics and 
aggregation performance are also maintained well, so in all 
possible Cohen-like time-frequency distributions, SPWVD is 
one of the most general distributions. Moreover, in the case of 
a narrow frequency band, choosing SPWVD can obtain higher 
time-frequency resolution, and the advantages are very 
prominent. 

B. Convolutional Autoencoder 

In deep learning, autoencoder is a very commonly used 
unsupervised learning model. The autoencoder is mainly 
composed of two parts: an encoder and a decoder. The 
encoder encodes the original representation into a hidden layer 
representation, and the decoder decodes the hidden layer 
representation into the original representation. It can also be 
said that the former compresses the input into a latent space 
representation, and the latter reconstructs the input from the 
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hidden space. The autoencoding process is shown in Fig.2. 
When the time-frequency diagram is input to the encoder, the 
encoder will generate a code, which represents a 
representation of the input time-frequency diagram in the 
latent space. Then input the code which output by the encoder 
into the decoder. The decoder will generate a message. In 
theory, the information generated by the decoder should be 
exactly the same as the input time-frequency diagram. In 
practice, there must be a gap between the two parts. The gap 
is called the reconstruction error, and the reconstruction error 
can be reduced by adjusting the parameters of the encoder and 
decoder. 

encoder decodercodeinput

Erro
r

reconstruction

 
Figure 2. Operation process of autoencoder 

CAE is based on unsupervised learning of the autoencoder, 
and includes convolution and pooling of CNN. The structure 
diagram is shown in Fig.3, and its training goal is to minimize 
the reconstruction error, and realize the sample reconstruction 
by using the mapping relationship between the input layer and 
the output layer to extract features. 
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Figure 3. Autoencoder structure 

Suppose there are k convolution kernels： 

( * )k k kh x b = +                              (2) 

Comparing the input sample with the result obtained by 
using feature reconstruction finally, and optimizing through 

BP algorithm, a complete CAE can be obtained： 

21
( )

2
i iE x y

n
= −                               (3)               

C. Residual Network 

In CNN, as the number of convolutional layers increases, 
the loss value of the training set will decrease accordingly, and 
then tends to be saturated. However, this rule is limited. When 
the number of layers increases to a certain value, the training 
loss value will not decrease, but will increase sharply. This 
phenomenon is called degradation, at this time, the features 
learned by the deep network are almost the same as those 
learned by the shallow network, which also makes deepening 
the layer meaningless. In addition, if you continue to increase 

the number of layers after degradation has occurred, the 
gradient will disappear. This phenomenon is called gradient 
explosion. 

Compared with the traditional CNN, the residual network 
can reach a higher depth, which means that the extracted 
feature values are more reliable and more representative. The 
data volume of a color RGB image is the total multiplied by 
its length, width, and color gamut, and each data set will have 
hundreds or thousands of images. For such a huge amount of 
data, the traditional CNN has poorer features and recognition 
speed. Therefore, we adopt a residual network that can learn a 
deeper level. 

The residual network is composed of many columns of 
residual blocks. A residual block in the same layer can be 
expressed as: 

1 ( , )l l l lx x x W+ = +                            (4) 

For a deeper level, the relationship between L  and l  can 
be expressed as: 

 
1
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According to the chain rule of derivatives in BP, the 
gradient of the loss function with respect to can be expressed 
as: 
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As shown in (5), during the whole training process, 
1

( , )
L

i i

i ll

x W
x

−

=




  cannot always be -1, that is to say, the 

problem of gradient disappearance will not occur in the 
residual network. 

weight layer

weight layer

+( )X X+

( )X

identity

relu

relu

X

X

 
Figure 4. Residual unit implemented in the form of layer jump connection 

In the residual network, the residual unit is realized in the 
form of layer jump connection, that is, the input of the unit 
and the output of the unit are directly added together, and then 
activated, the connection form is shown in Fig.4. From a 
macro perspective, when propagating between layers, the 
input signal can propagate directly from any lower layer to the 
upper layer. Since it contains a natural identity mapping, the 
problem of network degradation can be solved. 
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IV. RESULTS AND ANALYSIS 

The data set of this paper has 10 signal modulation types, 
which are 2ASK, 4ASK, 2FSK, 4FSK, 8FSK, BPSK, QPSK, 
16QAM, 32QAM, and 64QAM. The simulation data 
experiment parameters are shown in TABLE 1. 

TABLE 1.    SIMULATION DATA EXPERIMENTAL PARAMETERS 

Signal parameters Accurate value 

Sampling rate 40kHz 

Carrier frequency 4-16kHz 

Sampling points 500 

The number of signals for each 
modulation for each SNR 

200 

The SNR is -6dB to 4dB, and the step size is 2dB. The 
signal of each modulation method generates 200 time-
frequency diagrams as a data set under a single SNR. The 
maximum number of iterations is 1240, a total of 20 rounds, 
62 iterations per round. Fig.5 is the modulation recognition 
rate of the two modulation signals before and after denoising. 
Firstly, Fig.5 shows that as the SNR increases, the recognition 
rate is also increasing. Secondly, it can be clearly seen that the 
recognition rate after denoising is higher than before 
denoising, especially for the most obvious improvement of the 
recognition rate when SNR=-6dB, which can prove the 
effectiveness of the denoising method.

  

 
Figure 5. Accuracy under different SNRs 

Confusion matrix in Fig.6 shows that QPSK and 32QAM 
have a certain degree of confusion. How to effectively identify 
signals with similar modulation types is also the next step to 
be studied. In addition, other modulation methods have very 
good classification effects. According to the degree of 
convergence of the confusion matrix and the loss curve, the 
effectiveness of the residual network in modulation 
recognition can be proved. 

 
Figure 6. Confusion matrix and loss curve under 4dB 

The confusion of recognition mainly occurs in the 
modulation types of BPSK, QPSK and 16QAM, because the 
time-frequency diagrams of the three modulation signals are 
affected by background noise, some subtle features become 
blurred or even lost, resulting in insufficient characterization 
of the extracted features and a decrease in the classification 
accuracy. 

V. CONCLUSION 

Based on deep learning, this paper uses CAE for denoising 
and residual network to recognize the modulation of the 
simulated signal. First, the signal is subjected to SPWVD 
time-frequency transformation to obtain time-frequency 
diagrams with different SNRs, and then denoised by the CAE, 
and finally the denoised images are input to the residual 
network to identify and classify the modulated signal. 
Experimental results show that the recognition rate under -
6dB has increased by 12%, and the recognition rate under 
other SNRs has also increased by at least 6%, it can be seen 
that the denoising effect is good. The recognition rate after 
4dB denoising reached 97.16%, which shows that the 
recognition and classification effect is good. 
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