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Abstract—In this paper, the diagnostic issues for the four-
rotor unmanned aerial vehicle (UAV) with the sensor fault, the 
actuator fault and the composite fault are considered. Existing 
data-driven methods mostly present drawbacks of structural 
complexity and insufficient generalization ability. Therefore, a 
novel fault diagnosis scheme based on the optimized deep 
forest (GcForest) algorithm is put forward. According to the 
flight mission and mechanism of the four-rotor UAV, the six-
degree-of-freedom model and fault database are established. 
First, the wavelet packet translation (WPT) is used for fault 
feature extraction. Second, the fault isolation process is achieved 
by the GcForest algorithm. While the optimal cascade forest 
internal structure parameter is obtained by the grid search 
optimizer. Finally, simulation studies are provided to illustrate the 
enhanced performance and efficiency of the proposed approach. 
In addition, to solve the difficulty of diagnosis with a small 
number of samples, simulation experiments based on multiple 
working conditions are performed to evaluate the generalization 
capability.

Keywords: fault diagnosis, four-rotor unmanned aerial 
vehicle, deep forest, wavelet packet translation, composite fault

I. INTRODUCTION

Unmanned aerial vehicle (UAV) is a type of vehicle operated
by wireless remote control and the self-provided program [1].
Among them, four-rotor UAV is widely used in agriculture,
logistics, rescue, and other civil fields [2] due to its simple
structure, hovering capability, and good dynamic performance
[3]. The four-rotor UAV is intended for frequent, long-term,
high-intensity missions. Furthermore, strong vibrations and
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multiple disturbances are the main characteristics of its work-
ing environment [4]. Therefore, when flying off the ground,
sensors and actuators are prone to faults [5]. This will seriously
affect the flight performance of the four-rotor UAV, causing
aircraft instability, body damage, and even casualties. Failure
diagnosis research is very important for the stability and
reliability of the four-rotor UAV.

The four-rotor UAV is a nonlinear and strongly coupled
under-fitting system. With the rapid development of computer
technology and electronic materials technology, the composi-
tion and design of devices are becoming increasingly complex
[6]. In the process of repeated high-intensity operation for
a long time, the high-speed and high-load operation of the
actuator may cause structural damage [7]. Due to the limited
volume of aircraft, highly coupled micro-electronic sensors
are vulnerable to vibration, leading to failure [8]. Under the
real working condition, faults often have the characteristics of
concurrency and affiliation, which cause uncertain composite
faults. In order to guide researchers in improving the flight
performance of four-rotor UAVs with fault-tolerant control,
faults must be detected in an effective and timely manner.
Hence, efficient and accurate fault diagnosis methods are
urgently needed [9].

Fault diagnosis methods for complex nonlinear systems can
be divided into analytical model-based methods and data-
driven methods [10]. The former is supported by precise
mathematical models and extensive expert experience [11].
There are difficulties with the accuracy guarantee. The accu-
rate mathematical model of the complex system is generally
difficult to obtain. And system error, noise and interference
are difficult to model with precision. While the latter does
not depend on the system modelling accuracy. The artificial
intelligence (AI) technology is used to learn massive historical
data, and diagnose directly by the system monitoring status
information [12]. Based on the above analysis, data-driven
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methods are suitable for the fault diagnosis of the four-rotor
UAV with complex structure and uncertain flying environment.

The data-driven fault diagnosis is realized in two steps:
fault feature extraction and fault isolation. The sensitivity
of the features significantly affects the effectiveness of the
fault diagnosis [13]. In order to obtain state’s hidden feature
information, scholars in the field have used amount of signal
processing methods to analyze the signals of the system state.
H. Wang et al. [14] extracted the fault characteristics using a
Bayesian network and a compressive sensing algorithm. M.
Kordestani et al. [15] used discrete wavelet transformation
(DWT) to extract features of the controller and sensor signal
to the multifunctional spooler system, and provided guidance
to ANN in recognizing faults. Z. Jin et al. [16] realized the
intelligent fault diagnosis of rolling bearings by combining
Welch power spectrum analysis and radial basis function
natural network. Y. Li et al. [17] proposed hierarchical symbol
dynamic entry (HSDE) method to extract the fault information
in the high frequency components, and improve the classi-
fication effect of binary tree support vector machine (BT-
SVM). Accordingly, the following conclusions are reached:
(1) advanced signal processing technology can realize the
extraction of sensitive features; (2) the selection of appropriate
fault features can improve the fault isolation performance of
the subsequent classifier.

After obtaining the fault features of the observed signals,
AI learning machines are widely used for fault isolation. D.
Guo et al. [18] combined the short time Fourier transform
(STFT) with the convolution neural network (CNN) to identify
sensor faults of the UAV. Compared to the neural network
based method, the random forest (RF) has become a research
hotspot for its less hyper-parameters, stronger robustness and
no over-fitting. S. Ma et al. [19] developed a fault identifi-
cation system for the high voltage circuit breaker (HVCB),
based on the WPT and RF. However, the weight-sharing
feature of the decision-making process causes a degradation
of generalization performance. With this in mind, Z. Zhou
et al. [20] proposed the GcForest algorithm in 2017. It is a
supervised machine learning algorithm based on the RF and
deep neural network (DNN). An excellent representation and
learning ability, the adaptive model complexity adjustment
mechanism grant superiority to GcForest. G. Hu et al. [21]
applied the combination of GcForest and deep boltzmann
machine (DBM) for industrial fault diagnosis, and proved that
it has better isolation accuracy than deep learning (DL). Q. Liu
et al. [22] conducted the small-sample fault diagnosis model
of rolling bearing using the GcForest algorithm. However, for
the four-rotor UAV fault signal, the high temporal correlation
and large noise interference make it insufficient to analyze
signals in time domain. WPT can extract sensitive time-
frequency features by calculating the energy distribution, but
it also brings the problem of feature impoverishment. If the
feature set to be selected is too small, RF may rely heavily on
one feature and ignore the sensitivity contribution of others.
The biggest advantage of GcForest is that it greatly increases
the number and diversity of selected features through multi-

grained scanning. Moreover, the sensitivity of selected features
is further enhanced by cascade forest. It can be said that the
dual promotion of feature sensitivity and diversity has been
realized from twofold of width and depth.

The flight of four-rotor UAV is with changeable attitude,
rich fault forms and small training data. In summary, GcForest
algorithm is introduced in this work, aiming to achieve high-
precision fault diagnosis and improve the generalization ability
of the algorithm. The state information obtained by four-
rotor UAV is continuous signals. Certain amount of feature
information is lost during the transmission in the cascade
forest of GcForest, which leads to the decline of classification
performance. Although adding more cascade forest layers can
reduce the feature dilution, the classification time increases
exponentially. Therefore, the energy feature of state signals
is extracted by the WPT, and the dimension of input data
is reduced, solving the above problems. Furthermore, the
classification of GcForest depends on the setting of the internal
structure parameters of the cascade forest to some extent. In
order to get the optimal fault diagnosis model under the same
fault pattern, the Grid Search algorithm is used to optimize
the structural parameters of forest in this paper.

The contributions and highlights of this paper are summa-
rized twofold:

1) Combination of the WPT and GcForest algorithm is
proposed for fault diagnosis of the four-rotor UAV.

2) Optimal GcForest-based fault diagnosis model is auto-
matic constructed by Grid Search optimization.

The rest of this paper is organized as follows. Section
II describes the established four-rotor UAV mathematical
model, attitude control model, sensor fault model, actuator
fault model and composite fault model. Section III gives the
specific scheme of the proposed optimized GcForest-WPT
fault diagnosis of the four-rotor UAV. Section IV evaluates
the performance of the method from simulation experiments.
Conclusion is summarized in Section V.

II. FOUR-ROTOR UAV MODEL WITH FAULTS

A. Four-rotor UAV Model

The following hypotheses are used to establish the mathe-
matical model: (1) the four-rotor UAV is a rigid body; (2) the
center of gravity of the aircraft coincides with the geometric
center; (3) the acceleration of gravity is a consistent value;
(4) the ground coordinate system coincides with the inertial
system. The four-rotor UAV has an ”X” rigid body structure
composed of four brushless DC motors and fixed propellers,
as shown in Fig. 1.

In the figure, the body coordinate system is defined as
follows. The origin O is taken as the center of mass. The xb
axis is parallel to the body and points toward the nose. The
yb axis is perpendicular to the body and points to the right.
The zb axis is perpendicular to the xb - yb plane and points
downwards.
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Fig. 1. The body fix reference frame of the four-rotor UAV.

The mathematical model of four-rotor UAV consists of
dynamic equation and kinematic equation, and its six-degree
of freedom model is described by the following equations:

φ̇ = p+ sinφ tan θ + cosφ tan θ (1)

θ̇ = q cosφ− r sinφ (2)

ψ̇ = q sinφ sec θ + r cosφ sec θ (3)

ẍ = U1(sin θ cosψ cosφ+ sinψ sinφ)/m

−Dzẋ
2/m (4)

ÿ = U1(sin θ sinψ cosφ− cosψ sinφ)/m

−Dy ẏ
2/m (5)

z̈ =
[
U1 cos θ cosφ−Dz ż

2
]
/m− g (6)

where (x, y, z) represents the coordinates of the center of mass
of the vehicle under the earth coordinate system. θ, φ and ψ
are the pitch, roll and yaw angle, respectively. Dx, Dy and Dz

are air resistance coefficients of three axes. p, q, r represent
rotation angular velocity of under the body coordinate system,
which are formulated as follows:

ṗ = (Jr − Jz)qr/Jx
+ [jr(−ω1 + ω2 − ω3 + ω4) + U2] /Jx (7)

q̇ = (Jz − Jx)pr/Jy
− [jr(−ω1 + ω2 − ω3 + ω4) + U3] /Jy (8)

ṙ = [(Jx − Jy)pq + U4] /Jz (9)

where Jx, Jy and Jz refer to the rotational inertia of the body.
jr refers to the rotational inertia of the rotor. U2, U3 and U4

represent the aerodynamic moment. ω1, ω2, ω3 and ω4 are the
rotor speed.

After the vehicle mathematics model is completed, the flow
of the control system is established as shown in Fig. 2.
The system is comprised primarily of the controller, actuator,
sensor and four-rotor UAV unit. Among them, the actuator
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Fig. 2. Four-Rotor UAV controller topology.

is the brushless DC motor, and the sensor is the Inertial
Measurement Unit (IMU) composed of accelerometer and
gyroscope.

B. Sensor Fault Model

To better control the attitude, it is necessary to observe
the pitch angle and angular velocity. Therefore, typical sensor
fault modeling of the angle sensor (accelerometer) is listed in
TABLE I and carried out as follows:


θ1
θ2
θ3
θ4

 =




1 0 0 0
0 0 0 0
0 0 k1 0
0 0 0 1

 · F θ4×1+


α1

α2

0
δ1(t0)


 · β(t− t0) + F θ4×1 · β(t0 − t) (10)

where F im×n is a matrix whose elements are all equal to i, and
with dimension of m× n. β(t) = 0.5(sgn(t) + 1) is the fault
time profile function. δi(t) is a shock signal. t0 represents the
fault injection time.

The rate gyroscope is an important aerial sensor that pro-
vides an angular velocity signal to the navigation and guidance
system. In order to ensure an accurate measurement, the
angular rate sensor fault model is established as follows: θ̇1

θ̇2
θ̇4

 =

 1 0 0
0 0 0
0 0 1

 · F θ̇3×1+
α1

α2

0
δ2(t0)


 · β(t− t0) + F θ3×1 · β(t0 − t) (11)

Generally, the data-deviation fault is a constant bias value
added to the normal signal. The performance of stuck fault
maintains a constant and noiseless value. Gain-changed fault
shows that the deviation between the fault signal and normal
signal increases gradually. The outlier-data fault appears to be
a large point of deviation in an instant.
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TABLE I
TYPICAL FAULT PATTERNS AND TYPES OF THE FOUR-ROTOR UAV

Pattern Type Causes

Sensor

Fault

θ1(θ̇1) Data-deviation fault
Environment temperature instability causes the bias current

and voltage drifting in the amplifier circuit.

θ2(θ̇2) Stuck fault Permanent damage of the sensor cased by high overload operation.

θ3 Gain-changed fault The dielectric constant and sensitivity changes at the high temperature [23].

θ4(θ̇4) Outlier-data fault Extreme weather aggravates the body and causes the local shock wave.

Actuator

Fault

ω1 Constant deviation fault Harmonic current caused by the high-frequency switch leads to voltage distortion [24].

ω2 Complete failure In the high-speed cases, the rotor runs out of phase and burns down afterwards.

ω3 Thrust decline fault
The resistance value of the potentiometer changes

when the high-speed rotating rotor generates heat [25].

ω4 Abrupt thrust change The local current is produced by the conductive particles in the strong polluted environment.

C. Actuator Fault Model

Brushless DC motors are used on the four-rotor UAV,
driving the propeller to generate tension. The performance
of actuator fault in speed signal is the same as sensor fault.
In particular, the complete failure signal maintained 0. If
the actuator fails, the system will be unable to respond to
the control signal. Consequently, the following actuator fault
model is listed in TABLE I and established:


ω1

ω2

ω3

ω4

 =




1 0 0 0
0 0 0 0
0 0 k2 0
0 0 0 1

 · Fω4×1+


c1
0
0

δ3(t0)


 · β(t− t0) + F θ4×1 · β(t0 − t) (12)

It needs to be detailed that the motor speed signal can not
be observed directly from the actual four-rotor UAV. When
the motor breaks down, the change of tension has a direct
impact on the angular acceleration. Therefore, the motor fault
signal is observed in this paper through the angular rate sensor.
Additionally, it should be noted that the above fault pattern is
considered with the single actuator.

D. Composite fault model

The angular rate sensor fault and the motor fault influence
and cover each other. In order to solve the problem that it
is difficult to distinguish both when occurred at once, the

composite fault model is formed as follows:

u1 =
(
θ̇ ω3

)T
u2 =

(
θ̇ ω2

)T
u3 =

(
θ̇1 ω

)T
u4 =

(
θ̇1 ω2

)T
u5 =

(
θ̇1 ω3

)T
(13)

III. THE GCFORST-WPT BASED FAULT DIAGNOSIS
METHOD

A. Overview of the GcForst-WPT Based Fault Diagnosis
Scheme

In this section, the proposed fault diagnosis scheme for the
four-rotor UAV is stated. The flow of the strategy is depicted
in Fig. 3.

First, the four-rotor UAV attitude control system model in
a software environment is simulated for acquiring the sample
data set. The standard condition dataset is divided into the
training set and testing set according at a certain rate. While
the data obtained under test condition are only used to generate
the testing set. Next, after the data preprocessing, all sample
data are processed by the WPT, and the energy feature of the
sample signal is calculated. Then, the fault isolation model is
built by the GcForest algorithm, and the fault classification
is performed using the extracted feature. Finally, according
to the testing accuracy of the Gcforest-based classification
network, the Grid Search algorithm is used to optimize the
structural parameters of cascaded forest. After optimization,
the optimum model for fault diagnosis of the four-rotor UAV
is constructed.

B. Fault Dataset Establishment

When the four-rotor UAV simulation model is successfully
constructed, the simulation models with various faults are also
built. Under the standard working condition, the simulation
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Fig. 3. Overview of the GcForst-WPT based fault diagnosis scheme for the
four-rotor UAV.

program with sampling time T is run to obtain the angle
and angular velocity signals in the normal and fault state.
Depending on the fault injection timet and performance time,
sample points in [t − ta, t + tb] are intercepted as a sample
data. With the change in noise injection, the above operations
are repeated N times to form the standard condition dataset.
It is then divided into a training and testing set.

In particular, the normal state changes as the flying condi-
tion switches. Multiple test conditions are defined and corre-
sponding dataset is generated. In practice, the increase of test
conditions will lead to the doubling of the experimental cost.
Therefore, the test condition dataset is only used to compose
the test set.

C. The WPT-based Fault Feature Extraction Model

The four-rotor UAV sensor observation signal is a time
sequence signal. The low-frequency part of the signal is the
main information, while the high-frequency part contains the
measurement noise and fault information. The above charac-
teristics make fault diagnosis more difficult only on discrete
sampling signal features in the time domain. In order to take
into account the calculation burden reduction and classification
accuracy of the GcForest, signal feature dimensions need to
be reduced. In addition, sensitivity features should be retained
as much as possible.

In order to better describe the fault information implicit
in the sensor signal, the WPT is performed to analyze in
the domain of time and frequency. The WPT can decompose
the high and low frequency of each decomposition layer at
the same time [26]. The discrete signal’s WPT algorithm is

expressed as below:
dl(j, 2n) =

∑
k

ak−2ldk(j + 1, n)

dl(j + 1, n) =
∑
k

bk−2ldk(j + 1, n)
(14)

where j is the number of decomposition layers, n is the num-
ber of decomposition bands, ak and bk are the decomposition
coefficients. The energy of the signal f(x) in time domain is
expressed as:

‖f‖2 =

∫
|f(x)|2 dx (15)

The wavelet transform is performed on (15),the decompo-
sition coefficient is expressed as:

d(j, k) = 2j/2
∫
R

φ(2−jx− k)f(x)dx (16)

where φ(x) is the wavelet basis function. Based on the
Parseval equation, the relationship between (15) and (16) is
expressed as: ∫ +∞

−∞
|f(x)|2 dx =

∫
|d(j, k)|2 (17)

Derived from (17), square of the decomposition coefficient
can be used as the energy feature of the signal.

Based on the above analysis, the time sequence data derived
from the simulation experiment are then processed by the
WPT. The energy distribution characteristics are obtained by
calculating decomposition coefficients for different frequency
bands. Therefore, the WPT-based fault feature extraction
model is completed. Its output is passed into the following
fault isolation model as input.

D. The fault isolation model based on the optimized GcForest

There are two stages involved in the classification process
of the Gcforest algorithm: the multi-gained scanning and the
cascade forest. The former is used to increase the dimension
of sample features, while the latter is further needed to select
features through multi-layer built by the random forest and
completely random forest. Once the mapping relationship be-
tween features and labels is iteratively fitted, the classification
results are displayed.

To some extent, the classification accuracy of Gcforest is
dependent on the number of random forests and completely
random forests and their internal structure parameters. The
internal structure parameters are shown in TABLE II, which
have the characteristics of small amount and high universality.

As the most traditional way of hyper-parameters tuning, the
Grid Search algorithm enumerate every possible configurations
in the search space to get the optimal hyperparameter setting
[27]. Consequently, the Grid Search method is used to achieve
automatic optimization of the adjustable parameters to build
the optimal classification model. The work flow of the pro-
posed fault isolation model establishment is depicted in Fig.
4.

The entire process can be split into two parts: training and
testing. The specific steps are set out below.
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Fig. 4. Flow chart of the GcForest based fault isolation method.

TABLE II
THE INTERNAL STRUCTURE PARAMETER OF THE CASCADE FOREST

Meaning Tuning
Range

a

Ne The number of decision trees in the forest (5, 40, 5)
Dmax The maximum depth of the decision tree (1, 13, 2)

Smin
The minimum number of samples required

to split an internal node (30, 150, 20)

Lmin
The minimum number of samples required

to be at a leaf node (5, 30, 5)

a (a, b, i) is a range value of minimum a,maximum b and interval i.

1) Training Process:

Step 1. Sample dataset establishment: The training sample
data set is established by simply sampling and inter-
cepting the data obtained from the simulation experi-
ment.

Step 2. Feature extraction: The WPT is used to process the
normal and fault sample data to get the initial feature
data of the training sample set.

Step 3. The GcForest initialization: The internal structure
parameters of the multi-grained scanning model are
defined based on the specific features. The tuning
range of the internal structure parameter is set at the
same time as given in TABLE II.

Step 4. Model training: The preliminary feature data sample
set is used to form the Gcforest model. The model
adaptively determines the number of cascaded forest
layers and produces the current cross validation accu-
racy.

Step 5. Model optimizing: Based on the precision generated
by Step 3. , The Grid Search optimizer is used to
update the internal structure setting of the cascad-
ing forest. Until the optimal model is obtained. The
Optimized GcForest-based fault diagnosis model is
constructed.

2) Testing Process:

Step 1. The test sample set is established by the same method
as the training set.

Step 2. The preliminary feature data of the test sample set are
extracted using the same method as the training set.

Step 3. The optimal fault diagnosis model based on the Gc-
Forest is used to classify the test feature set, and the
fault isolation result is obtained.

IV. SIMULATION RESULT ANALYSIS

A. Simulation Setup and Data Acquisition

The above-mentioned four-rotor UAV model is constructed
under the simulation environment. The conditions for simulat-
ing the standard condition are as follows: the initial position
is 0, the initial velocity is 0, the Euler angle is 0. The tracking
signal is a pitch angle step signal with an amplitude of 10◦.
The noise is Gaussian noise, with an average of 0 and a
variance of 0.001◦. The simulation time is 5s and the fault
injection time is 3s.

The faults are considered with the used of the 6-axis attitude
sensor MPU6050TM. By integrating accelerometer, gyroscope
and digital motion processor, MPU6050TM can accurately
measure the acceleration, angular velocity and attitude angle of
four-rotor UAV [28]. The parameters for each fault model are
defined as follows: α1 = 2◦, α2 = 5◦, k1 = 0.7, δ1 = 70◦;
α̇1 = 5◦/s, α2 = 1◦/s, δ2 = 10◦/s; c1 = 20rad/s, k2 =
0.9, δ3 = −500rad/s. The simulation result drawn in Fig.
5 shows that: (1) the designed controller can realize the
attitude tracking of the four-rotor UAV; (2) the fault signals
are different, yet easily masked by noise, so it is suitable for
data-based fault diagnosis methods.

The amplitude of the tracking signal is set to 15◦, 20◦ and
25◦ for the test condition. The sampling time is defined as T =
and the interception time is as [2.5, 5] s. 500 sets of simulated
data are obtained for each fault model. The standard condition
data are split into testing and training data at a ratio of 1:1.

B. Data Preprocessing

The features of the signals observed by sensors are ex-
tracted. Where db2 wavelet is used for a three-layer WPT
processing. The sensor signal has a constant value in the ideal
normal state. To eliminate the coverage of the fault energy
by the large high-frequency energy, nodes 2-8 are selected for
energy feature consideration. As the actuator fault node energy
shown in Fig. 6, the energy eigenvalues of the different fault
are different in each frequency band. The energy features are
similar in high-frequency nodes, but quite different at low-
frequency ones. In this way, the feasibility and efficiency of
the extraction of energy feature based on the WPT are proven.

C. Comparative Analysis of Parameter Optimization

The Grid Search algorithm is applied to optimize the inter-
nal structure parameters of cascade forest. Grid search is an
automatic exhaustion method. According to the given parame-
ter range, all possible parameter set is traversed computed. The
best parameter set is therefore selected as the optimal solution.
In order to demonstrate the superiority of the optimization
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Fig. 5. The pitch angular rate response of four-rotor UAV with actuator fault. (a) constant deviation fault. (b) complete failure. (c) thrust decline fault. (d)
abrupt thrust change.
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Fig. 6. The WPT node energy value of four-rotor UAV with the actuator
fault.

method, the comparison parameters are defined. The results
of parameter optimization and comparison set are given in
TABLE III. For simplicity, the Gcforest built by comparison
and optimal parameters are used to diagnose the actuator fault.
Where the labels 0, 1, 2, 3, 4 represent the normal sate, the
constant deviation fault, the complete failure, the thrust decline
fault and the abrupt thrust change, respectively. As results

TABLE III
THE INTERNAL STRUCTURE PARAMETER OF THE CASCADE FOREST

Optimum Value Comparison Value
Ne 10 5

Dmax 3 1
Smin 80 80
Lmin 10 10

show in the Fig. 7a and Fig. 7b, a higher diagnosis accuracy
is achieved by the optimal GcForest algorithm. Heretofore,
the optimized fault diagnosis model based on Gcforest is
constructed.

D. Comparative Analysis of Fault Diagnosis

Once the optimal fault diagnosis model is formed, the
testing set is used to assess fault isolation performance. The
parameters of the RF-based fault diagnosis model are defined
as the optimal parameters obtained in the previous section.
The diagnosis results of different faults are given in TABLE
IV.

By comparing the results in Fig. 7b, Fig. 7c and TABLE IV,
some conclusions are reached. Although the accuracy of the

587



(a)

(b)

(c)

Fig. 7. Fault diagnosis result of the actuator fault. (a) fault diagnosis result
of the GcForest. (with accracy of 92.96%) (b) fault diagnosis result of the
optimized GcForest. (c) fault diagnosis result of the RF.

optimized GcForest-based fault diagnosis method is lower with
the actuator and composite fault, it is still much better than the
RF-based method. The possible reason is analyzed as follows:
when the angular rate signal is used as the representation
of the rotor speed, the integral operation is required. This
operation will replace the high-frequency component of the
sudden change signal with low-frequency components of the
slow change signal. As a result, the sensitivity of energy

TABLE IV
FAULT DIAGNOSIS ACCURACY FOR DIFFERENT FAULTS

Fault Type The Optimized
GcForest Algorithm

The RF
Algorithm

Sensor
Fault

Angle
sensor 99.50% 91.18%

Angular rate
sensor 100% 91.97%

Actuator Fault 98.08% 92.06%
Composite Fault 98.40% 93.08%

TABLE V
THE FAULT SIZE OF THE ANGLE SENSOR FAULT

Fault Label Scenario 1 Scenario 2 Scenario 3 Scenario 4
1(◦) 2 3 4 5
2(◦) 2 3 4 5
3(%) 60 70 80 90
4(◦) 60 70 80 90

features extracted by WPT to abrupt faults is weakened.
Moreover, most of the misdiagnosis was focused on the test

condition with the tracking signal altitude of 20 and 25. The
result shows that the proposed method can tolerate a certain
changes in the operating condition of the four-rotor UAV.
It also demonstrates that GcForest has better generalization
performance under different flight conditions.

E. Comparative Analysis of Fault Diagnosis Under Different
Fault Size

The features for the fault diagnosis are derived from the
signal data, making the amplitude and classification results
closely related. But in the practical application process, the
fault diagnosis system is expected to be able to diagnose the
fault with a certain range of severity. For this reason, we
diagnose the angle sensor fault and actuator fault with different
fault size signals. Among them, 8 scenarios are listed in
TABLE V and TABLE VI, and the fault diagnosis results using
different diagnosis methods are given in TABLE VII. The
results show that RF method and optimized GcForest method
are likely to be confused and misdiagnosed in the face of faults
with the same type but different sizes. However, the proposed
method has an obvious priority and greater robustness.

V. CONCLUSION

In this paper, the GcForest algorithm is applied to the
sensor, actuator and composite fault diagnosis of the four-rotor
UAV. The WPT is used to extract features that reflect fault
information from small samples of the sensor signal. Using

TABLE VI
THE FAULT SIZE OF THE ACTUATOR FAULT

Fault Label Scenario 5 Scenario 6 Scenario 7 Scenario 8
1(rad/s) 20 30 40 50

2(rand/s) 0 0 0 0
3(%) 60 70 80 90

4(rand/s) -400 -500 -600 -700
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TABLE VII
FAULT DIAGNOSIS RESULT OF FAULT WITH VARYING FAULT SIZE

Random Forest Optimized GcForest
The Angle Sensor Fault 92.88% 95.82%

The actuator Fault 94.40% 99.14%

the GcForest algorithm, the mapping from fault feature space
to fault pattern space is realized to diagnose faults. In addition,
the Grid Search algorithm is applied to form the optimal
fault diagnosis model. The simulation results show that the
proposed algorithm can perform the fault diagnosis of the
four-rotor UAV, with superiority and a strong generalization
capability.
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