
Detection and Mitigation of Label-Flipping Attacks in Federated Learning Systems

with KPCA and K-Means

 Dongcheng Li W. Eric Wong* Wei Wang

Department of Computer Science Department of Computer Science China University of Geosciences

University of Texas at Dallas University of Texas at Dallas Wuhan, China

 Richardson, USA Richardson, USA wangwei5811@foxmail.com

 dxl170030@utdallas.edu ewong@utdallas.edu

 Yao Yao Matthew Chau

 China University of Geosciences University of Texas at Dallas

 Wuhan, China Richardson, USA

 905345546@qq.com mcc180003@utdallas.edu

Abstract—Federated learning is a popular machine-learning

technique that is often preferred due to its efficiency and data

privacy. However, federated-learning systems face a serious

threat of data poisoning that can cause the systems and

predictions to fail if not treated in time. This study extends

another study of data-poisoning attacks in federated-learning

systems conducted by Tolpegin et al. We first investigate the

effectiveness of the defense strategy suggested in Tolpegin’s

study. Then we propose an improved defense strategy that

emphasizes employing KPCA and K-mean clustering. It is

demonstrated in this paper that our defense strategy, when

combined with improved dimensionality-reduction algorithms,

produces better results in defending against data-poisoning

attacks in federated-learning systems.

Keywords: federated learning; data poisoning; label flipping;

KPCA

I. INTRODUCTION

Federated learning (FL) is a popular machine-learning
(ML) technique that is often preferred over traditional ML
because it is faster, more efficient, and offers greater data
privacy. However, FL systems face a serious threat of data
poisoning that can cause the systems and predictions to fail if
they are not treated early on [1].

This paper aims to contribute a defense strategy for FL
systems because current FL systems are very vulnerable to
data-poisoning attacks. In this paper, we examine the
effectiveness of Tolpegin’s defense strategy against data-
poisoning attacks in FL systems. Then we propose an
improved defense strategy which uses kernel principal
component analysis (KPCA) and K-mean. Lastly, we
compare the results of the experiments on the effectiveness
of different defense strategies in a controlled environment.

The organization of this paper is as follows. In Section 2,
the existing literature is reviewed which relates to the
detection and mitigation of data poisoning in FL systems. A
high-level overview of the FL system, data-poisoning attacks,
and clustering techniques is presented in Section 3. In Section
4, we described the setup for the experiment along with the
proposed defense solution. In Section 5, findings from the
experiment are explained on the basis of the resulting outputs.
Finally, we draw the conclusion and describe future work that
can be done on the area.

II. RELATED STUDIES

The trustworthiness of the new model is a considerable
problem, as ML is being applied to every field. Therefore,
trustworthiness needs to be considered before we can believe
in the results of ML [1]. Traditional ML is slower than FL
because the new model can be trained faster and more
efficiently and the privacy of the raw data is ensured.
However, few relevant studies have been done on counter-
poisoning attacks on FL; instead, the focus is on traditional
ML [1]. With increase in the popularity of FL, there is a need
to work on its vulnerabilities, as there are various FL attacks:
e.g., backdoor attacks, gradient-leakage attacks, and
membership-interference attacks [2]-[10].

There are two types of poisoning attacks in FL: model
poisoning and data poisoning. This study falls in the data-
poisoning category. An aggressor can manipulate training-
data labels by using the label-flipping attack, thereby
poisoning the data. The model is not interfered with anyway,
and it runs smoothly [1]. On the other hand, model-poisoning
attacks target the model, leading to high error rates in the
model and causing the FL system to fail. However, model
poisoning is hard to implement, as it requires expert
poisoning participants to execute successfully. Data
poisoning, on the other hand, can be done by non-expert
participants [1]. Therefore, data poisoning is preferable and
is used more frequently, as it can be done easily.

To detect and mitigate various FL attacks, Chen et al. [11]
introduced a federated-pruning method to remove redundant
neurons in the network and adjust the model’s extreme
weight values. Fung et al. [12] proposed a novel defense for
FL Sybil attacks that identifies poisoning Sybils based on the
diversity of client updates in the distributed-learning process.
Prakash and Avestimehr [13] proposed a strategy to
mitigating FL Byzantine behaviors in heterogeneous data-
distribution settings by comparing each client’s update with
a guiding update of that client. Fu et al. [14] designed an
aggregation algorithm which combines repeated median
regression with a reweighting scheme in iteratively
reweighted least squares. In addition, Tahmasebian et al. [15]
proposed a robust aggregation algorithm inspired by truth-
inference methods used in crowdsourcing by incorporating
the worker’s reliability into aggregation. Moreover, some
studies have considered data-poisoning attacks and their
defense systems that are more closely related to ML systems

551

2021 8th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/21/$31.00 ©2021 IEEE
DOI 10.1109/DSA52907.2021.00081

and less concerned with the FL system that is under
consideration [16]. These studies examined defense systems
like server-side defense and anomaly detection/k-NN. Other
related works have analyzed different types of data-poisoning
attacks such as spam filtering [17], malware and network
anomaly detection [18], [19], disease diagnosis [20], computer
vision [21], and recommender systems [22].

III. PRELIMINARIES

A. Federated Learning

Machine learning has become a popular tool for
predicting outcomes, whereas federated learning is an ML
technique. Since the prediction of ML depends upon the data
provided to it, and since large amounts of data increase, the
prediction-accuracy management of data becomes a
cumbersome task [1]. Another problem associated with ML
is how can the data models be considered accurate, that is,
how trusted they are. Privacy of the data also causes concern
when data is collected for the model. Federated learning
offers a solution to these problems because, instead of sharing
raw data, participants need to share only their model
parameters [1]. Therefore, a global data model is created
wherein all the individual participants send their model
parameters to a central server and are made through this
collection. This makes FL much more efficient and faster
than traditional ML, since each participant only needs to train
his or her local dataset. The global model is updated by
aggregating the local dataset model updates sent by the
participants [1]. Since the aggregation of the individual
participants makes this dataset, there is no centralized server
curator to verify it. As such, the FL system is left vulnerable
to poisoning attacks.

B. Vulnerability in FL System

The scenario considered in the experiment involves a
group of participants in the FL system who under the
influence of a malicious adversary. The percentage of the
participants under control of the malicious adversary can be
denoted as m. Those participants are used to poison the global
model for a set number of rounds in the FL system. Rather
than target all the model’s classes, the adversary’s objective
is to alter the learned parameters for a specific class so that
the final model, M, has a high error rate [1]. As a result, the
adversary’s attack is a targeted poisoning attack instead of an
untargeted attack, which aims for high errors across all
classes in the global model [1], [23]-[25]. Targeted attacks
have the advantage of being hard to detect, as their influence
is limited only to the class they affect and all other classes
function normally.

C. Label-Flipping Attacks

In label-flipping, also known as data poisoning, an
attacker can control the labels assigned to the training data.
By flipping the labels, the performance of the FL system can
be seriously diminished even if only a fraction of the training-
point labels have been flipped. For example, changing the
labels of the airplane class to that of the dog class in the
CIFAR-10 database is a successful label-flipping attack.

Since an FL system can have m of malicious participants, this
label-flipping attack can cause the global model to have a
high error rate.

There is no centralized authority to validate data in the FL,
which makes it vulnerable to data poisoning. Data poisoning
can be done by aggressors who appear in the form of
participants on the FL system. These may either have
malicious intentions or may have been compromised by some
adversary [1]. The training-data updates provided by them
can be mislabeled or may have poisonous samples. In the
absence of a central authority, the updates provided by
adversaries do not get filtered and, as a result, poison the
global model being trained. This data poisoning is
undetectable through ordinary means but can be found
through dimension-reduction and clustering algorithms [1].
Using these, the updates of honest participants can be
differentiated from those of aggressors by saving the data
from being poisoned.

IV. ANALYSIS OF DEFENSE STRATEGIES AGAINST LABEL-
FLIPPING ATTACKS IN FL

This study extends Tolpegin et al.’s study of data-
poisoning attacks of FL systems. From Tolpegin’s study, we
see the effectiveness of a targeted poisoning attack against the
FL system and the potential for a dimensionality algorithm to
defend against such poisoning attack. We improve upon
Tolpegin’s study by using a specific dimensionality-
reduction algorithm with clustering and proving its
superiority. More specifically, we use KPCA instead of
principal component analysis (PCA) because of KPCA’s
advantages over the latter, and we use k-mean clustering for
noise reduction. In addition, to render the experiment
controlled and accurate, the same framework and dataset used
by Tolpegin et al. were also adapted for our study.

A. Federated-Learning System Setup

In the experiment, the FL system is implemented in the
PyTorch library available in the programming language
Python [25]. There is one central aggregator and N-50
participants by default in the setup, k = 5. The distribution of
the training dataset among the participants is uniform and
random relative to the total training dataset. Furthermore,
each participant is assumed to have a distinct set of training
data. We applied the independent distribution methodology
and used identically distributed data (IID) on the data to
accomplish this. Each participant Pi’s training dataset Di
contains no testing data, as testing data is used to validate the
model. Hence, it is not required to be given to the participants.
The FL experiment is set to run for R=200 rounds in total
because it has been observed that the DNN coverage of both
models is less than 200 training rounds.

B. DNN Architecture Setup

The CIFAR-10 [26] and Fashion-MNIST [27], two
famous image-classification datasets, have been used in the
current scenario. There are 10 object classes in CIFAR-10,
each of which has 6,000 images for a total of 60,000 images,
all of which are all colored [1]. The CIFAR1-10 has object
classes such as frogs, horses, and airplanes [26]. The CIFAR-

552

10 dataset is divided into batches of 10,000 images, with five
batches kept for training data and one kept for training the
model. The same is seen in Fashion-MNIST, which is divided
into six batches, each with 10,000 images. Similarly, five are
kept for training the dataset, and the remaining one is used for
validating the model. The images in Fashion-MNIST are
greyscale and are associated with 10 classes of clothing such
as dresses, shirts, and sneakers [27]. Tables 1 and 2 show the
DNN architecture used in both the datasets:

TABLE I. THE DNN ARCHITECTURE USED IN CIFAR1-10

Layer Type Size

Conv+Relu+Batch Norm 3*3*32

Conv+Relu+Batch Norm 3*32*32

Max Pooling 2*2

Conv+Relu+Batch Norm 3*3*32

Conv+Relu+Batch Norm 3*32*32

Max Pooling 2*2

Conv+Relu+Batch Norm 3*3*32

Conv+Relu+Batch Norm 3*32*32

Max Pooling 2*2

Fully Connected 2048

Fully Connected+Softmax 128/10

TABLE II. THE DNN ARCHITECTURE USED IN FASHION-MNIST
Layer Type Size

Conv+Relu+Batch Norm 5*1*16

Max Pooling 2*2

Conv+Relu+Batch Norm 5*16*32

Max Pooling 2*2

Fully Connected 1568/10

The DNN architecture used for CIFAR-10 has a test
accuracy of ~78% without poisoning. From the table, we can
see that, to accomplish this in CIFAR-10, we use six
convolutional layers, batch normalization, a rectified linear
activation function (ReLU), three max-pooling layers, and
two fully connected dense layers with one running SoftMax.
For the Fashion-MNIST setup, we use a two-layer
convolution network, batch normalization, ReLU, two max-
pooling layers, and one fully connected dense layer. The
resulting DNN architecture, in this case, has a test accuracy
of ~91% without poisoning.

C. Label-Flipping Attack Setup
For the experiment to mimic a label flipping attack in an

FL system with N participants, of which m are malicious. We
first randomly assigned a number of participants (N) for the
experiment. Then N x m of participants (P) were randomly
identified as malicious at the start of each experiment, and the
remaining were identified as honest. However, to make the
experiment more accurate, we considered the effect caused
by malicious participants chosen randomly; so, each of the
experiments were replicated 10 times, and the average result
was taken as the final value. As a result, the value of m is set
to 10 percent in the experiment (that is, m = 10%). Three
label-flipping attacks settings were explored in the

experiment to represent a broad set of conditions an adversary
could use to approach an FL system to attack. The following
were the conditions used in the experiment:

• In the first case, the source class was very

frequently misclassified as the target class.

• In the second case, the source class was very

infrequently misclassified as the target class.

• The third case is a combination of the first and

second cases.
The class labels used from CIFAR-10 for testing for the

first case were dog to cat. In the second case, we used airplane
to bird labels; and in the third case, we tested the automobile
to the truck. In the case of Fashion-MNIST, the class labels
used for the first one were shirt to t-shirt/top. Trouser to dress
were used for the second case and coat to the shirt were used
for the third case.

D. Defense Strategy Feasibility
We first checked the defense strategy employed by

Tolpegin et al. and then introduced our proposed defense
strategy. A defense strategy needs to be implemented so that
the FL system can defend against the label-flipping attack
discussed so far. The defense needs to be such that it can
defend against highly effective adversaries. For this, an
algorithm needs to be introduced in the FL system so that the
aggregator can identify malicious participants. By using the
algorithm proposed in Tolpegin’s study [1], an aggregator
can identify the malicious participants in the FL system. After
these malicious participants have been identified, the
aggregator can either choose to blacklist them or ignore their
updates for the upcoming rounds.

The basis of the defense strategy used is that a
dimensionality-reduction algorithm can catch malicious
updates because the parameter updates contain unique
characteristics. However, since DNNs have many parameters,
manually checking for these malicious parameter updates is
challenging. In contrast, as seen in the paper, an automated
approach can use PCA, which is a dimensionality-reduction
algorithm, to find and filter the parameters sent by the
malicious updates.

Figure 1 shows the results generated from the experiment
regarding the impact on the number of malicious participants
in the global model.

a) CIFAR1-10

553

b) Fashion-MNIST

Figure 1. The source recall and global model accuracy obtained by

attacking CIFAR-10 and Fashion-MNIST by the m% adversaries

The factors considered here are the percentage of

malicious participants, that is, the m of the participant effect
on the global model accuracy and source class recall. The m
used for this step ranges from two to 50 percent. From the
results, it can be seen that as m increases, the test accuracy of
the global model decreases. Furthermore, even with a small
m, the global-model test accuracy still decreases compared to
that of a non-poisoned model, but the source-class recall of
the model exhibits an even more significant decrease in this
case. When m is 40%, the global model test accuracy drops
from 78.3% in the case of the non-poisoned model to 74.4%
in the poisoned scenario for CIFAR-10. Similarly, the source-
class recall falls to 0%. Fashion-MNIST shows a similar case
of global-model test accuracy and source-class recall. For
example, when m is four percent, the source class decreases
by about 10 percent. By this, we can see that even if an
adversary controls a very small percentage of participants, he
or she can still cause the global model accuracy to drop. Thus,
even a few participants under the control of an adversary can
significantly impact an FL system. Though both datasets are
vulnerable to label-poisoning attacks, there is a difference in
the degree of vulnerability. From the results of the experiment,
it can be seen that CIFAR-10 is more vulnerable than
Fashion-MNIST. During the experiment, we also found that
it is not essential for the adversary to identify the most
vulnerable source and target-class combination. Because
there is not necessarily a correlation between attack
effectiveness and misclassification performance for the non-
poisoned model, we can see from the above section that, after
the elimination of malicious participation, a high-utility
convergence can eventually be achieved. The possibility of
such a recovery from early-round attacks supports the case
for using the proposed detection technique as a defensive
strategy. This finding is consistent with Tolpegin’s study.
The result shown above also verifies that Tolpegin’s
proposed algorithm indeed reduces the effect of label-
flipping attacks on FL systems.

E. Defending Against Label-Flipping Attacks with KPCA

What follows is the algorithm to be used instead of the
one proposed by Tolpegin’s study [1]:

Algorithm 1: KPCA

function kpack (x, sigma, cls, target-dim)

#Data extraction

 psize ← size(𝑥)

 𝑚 ← psize(1)

 𝑛 ← psize(2)

#Sampleing kernel matrix

 l ← ones(m, m)

for i ∈ (1,m) do

 for j ∈ (1,m) do

 𝑘(i,j) ← kernel (𝑥(i,:),x(j,:),cls, sigma)

#Computing kernel absolute value after extraction

𝑘1 ← k-1*k/m-k*l/m+l*k*l/(m*m)

#calculate signal values and eigenvalues

[𝑣, 𝑒] < eig(𝑘1)

𝑒 ← diag (𝑒)

Filtering eigenvalues and eigenvectors

[dump, index] ← sort(e, 'descend')

𝑒 ← 𝑒(index)

𝑣 ← 𝑣(: ,index)

rank ← 0

for i ∈ (1,size(𝑣, 2)) do

 if 𝑒(𝑖) < 𝑙𝑒 − 6 then

break

else

𝑣(: , 𝑖) ← 𝑣(: ,1) . /sqrt(𝑒(𝑖))

 rank ← rank + 1

eigenvectors ← 𝑣(: ,1: target_dim)

 eigenvalues ← 𝑒(1: target_dim)

 #projection

 project_invectors ← 𝑘1* eigenvectors

In Algorithm 1, we first performed data extraction on

KPCA to obtain the number of samples m, the sample
dimension n, and a matrix with m rows, and n columns with
weighting value of 1. Use it to calculate the kernel matrix K
according to the kernel formula, then centralize K to obtain
the centralized kernel matrix Kl, and then calculate the
eigenvalue v and eigenvector e of the decentralized Kl. Next
sort e in descending order, then filter the eigenvalues and
eigenvectors by traversing each column of eigenvalue v.
Finally, calculate the project intectors of the centered kernel
matrix k1 on the eigenvectors.

Algorithm 2 enables the aggregator to identify malicious
participants. Let R denote the vulnerable FL training round
set. Let P denote the participant set and PT denote the current
global model parameters. For each round r ∈ R, find the set
of participants Pr queried in the participant set P of this round
and the global model parameter PTr-1 of the previous round.
Then update the model parameters for each participant after
training the DNN, and at the same time the aggregator
calculates the incremental 𝑃𝑇𝛥,𝑖 by comparing the

554

participant-model update with the global-model update. Then
connect the parameters in 𝑃𝑇𝛥,𝑖 to the source-class output

node and add the result to PT. Finally, obtain the result via

standardization, dimensionality reduction, and clustering on
PT.

Algorithm 2: An improve algorithm for identify malicious model updates in FL using KPCA

def evaluation update (𝑅: set of vuluerable train rounds, P: participant set, U: update)

𝑃𝑇 = current global model parameter

for each round 𝑟 ∈ 𝑅 do

𝑃𝑟: participants in 𝑃 queried in train round 𝑟

𝑃𝑇𝑟−1 : Global model parameters after training round 𝑟 − 1

for participant 𝑃𝑖 ∈ 𝑃𝑟 do

𝑃𝑇𝑟,𝑖: updated parameters after train DNN (𝑃𝑇𝑟−1)

 𝑃𝑇𝛥,𝑖 = 𝑃𝑇𝑟,𝑖 − 𝑃𝑇𝑟 : "Aggregator computes delta in participant's model update compared to the global"

𝑃𝑇
𝑠𝑟𝑐

𝛥,𝑖
: parameter in 𝑃𝑇𝛥,𝑖 connect to source class output node

Add 𝑃𝑇
𝑠𝑟𝑐

𝛥,𝑡
 to 𝑃𝑇

𝑃𝑇 ′ = standardize (𝑃𝑇)

𝑃𝑇″ = dimensionality_reduction (𝑃𝑇 ′)

𝑃𝑇‴ = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑃𝑇″)

𝑃𝑙𝑜𝑡(𝑃𝑇″, 𝑃𝑇‴)

Using this algorithm, we can successfully identify the

malicious participants in the FL system. In the case of PCA,
this algorithm is used for dimensionality reduction when the
feature space contains too many irrelevant or redundant
features. The aim is to find the intrinsic dimensionality of the
data [28]. The KPCA, on the other hand, can be considered a
smaller version of PCA [28], [29], but KPCA has advantages
over PCA. The PCA performs better on linear data. As such,
it can handle skewed data very effectively when its
performance with non-linear data is not up to the mark [30].
While this may not be a problem in the beginning, it becomes
difficult for PCA to identify malicious updates if the dataset
has non-linear data. On the other hand, KPCA can handle
non-linear data very effectively while also successfully
handling linear data (such as skewed data) [30], [31]. This was
seen when both PCA and KPCA were applied to the ECG200
dataset for a classification comparison. The KPCA separated
the two classes best [30]. The comparison was a made on a
number of factors. For example, the quality of data separated,
the dimension, the F1 score, the runtime, a power analysis
and the p value were all considered. Another factor that gives
KPCA an edge over PCA is the topology used for random
projection, which can sometimes cause the projection to be
less than optional in the scenario [30]. In the case of KPCA, a
manifold topology is used, which allows it to detect data
discrepancies in the lower dimension [30]-[32]. This makes
KPCA easy to implement and a better choice than PCA for
the detection of malicious updates, as it covers the weakness
of the PCA (i.e., PCA can fail to detect malicious updates in
non-linear data).

K-means is a clustering algorithm that returns a natural
grouping of data points based on their similarity. As such, it
can be considered a special case of Gaussian mixture models
[28]. While both K-mean clustering and PCA first seem to
have very different objectives, in reality, both of them exhibit

a very deep connection [29]. The connection is such that K-
mean can be considered a scattered PCA. The PCA aims to
minimize the mean-squared reconstruction error by
representing all data vectors as a linear combination of a
small number of eigenvectors [29]. The K-mean also aims to
minimize the mean-squared reconstruction error by
representing all data vectors as linear combinations of a small
number of cluster centroids [29]. It is a common practice to
apply PCA before a clustering algorithm such as K-mean. It
is believed that doing so improves the clustering results (that
is, reduces noise) in practice.

F. Experiments Setup

In the experiment, the CIFAR-10 and Fashion-MNIST
were attacked by an adversary using the methods discussed
above. The results are shown in a bar graph for four cases.
For the first case, no dimensionality-reduction algorithm was
applied the dataset. For the second, only PCA was applied as
the defense algorithm. The third case used KPCA as a defense
method, and the fourth used KPCA along with K-mean as the
method for defense against adversarial attacks on the
database. The same settings were applied to check both
accuracy and global models, so each has four related graphs.
The graphs are also represented by four colors, and each of
the cases has one. Black is for Case 1, blue is for Case 2, green
is used to represent Case 3, and Case 4 is represented by red.

On the other hand, the second experiment was conducted
to check how well the proposed algorithm (Algorithm 2). The
two-dimensional plot shows how effective the algorithm can
be when using KPCA and K-means to help identify malicious
updates sent by adversaries from honest updates. The blue
color in the plot is for the malicious updates, and yellow is
used to denote the updates sent by honest participants. The
plots are drawn from the output generated by the proposed
algorithm.

555

V. RESULTS COMPARISON AND ANALYSIS

Figure 2 shows bar graphs for two datasets for the data-
poisoning effect on source recall and model accuracy. The
values for m (that is, the number of malicious participants for
both experiments) were set from zero to 50 percent. For
model accuracy, the values were between 72 to 79 in CIFAR-

10, while the source-recall values for CIFAR-10 are between
zero to 80. In Fashion-MNIST, the values for model accuracy
were between 84 and 92. Source recall for Fashion-MNITS
has values between 10 and 90. The graphs offer a comparison
of four states (that is, when the FL system is not provided
with any defense from data poisoning). The results for both
of the datasets are discussed below.

a) CIFAR1-10

b) Fashion-MNIST

Figure 2. The source recall and global model accuracy obtained by attacking the CIFAR-10 and Fashion-MNIST by m adversaries under various defend

strategies

In the first case, it can be seen from the graph in black

color that, with an increase in the number of malicious
participants, the accuracy falls from the original 78 percent.
The fall is at first gradual, but when the percentage of
malicious participants increases from 10 percent, the
accuracy drops sharply. From 40 to 50 percent, the accuracy
does not drop any further and stays at a constant low point.
The source recall of the model suffers the same fate when the
percentage of malicious participants in the FL system is
greater than 10 percent, and it drops sharply. Moreover, after
the percentage of malicious participants is greater than 30
percent, the source recall of the model falls to zero. The
second case is depicted in the blue graph on the occasion

when PCA is used in the defense against data poisoning.
From the graph, it can be seen that there is a minimal fall in
accuracy when the percentage of malicious participants is
two, and there is no further drop in accuracy until the
percentage is increased to four. After four percent, there is a
sharp drop to 10 percent, and then there is no further drop in
accuracy until 20 percent. However, after 20 percent, there
are sharp falls for every 10 percent increase in the number of
malicious participants. The third case is for using KPCA
instead of PCA and is represented by the green graph. The
green graph shows that, compared to the blue one (that is,
when PCA was used), there is a smaller drop in accuracy
compared. When KPCA is applied, there is no drop in

556

accuracy until the percentage of malicious participants is
greater than four percent, while in PCA, the drop in accuracy
starts from when the percentage is greater than two percent.
The red graph (that is, KPCA with K-means) shows a similar
result, with a slight increase in reduction of accuracy.

However, K-means is a time-consuming process; hence, it is
not the optimal choice. A similar trend can be seen in the
source recall. As such, it can be seen that KPCA performs
best for defending against data-poisoning attacks.

a) CIFAR1-10

b) Fashion-MNIST

Figure 3. The effectiveness of the proposed algorithm in distinguishing malicious updates from honest updates

557

The same scenario as the one discussed in CIFAR-10 can
be seen as compared to the other graphs the green one that is
KPCA performs best as the drop in accuracy and recall is the
lowest, thereby giving further support to the theory that the
proposed defense strategy counters the weakness of the FL
system with respect to data-poisoning attacks. We can see
from the green and red graphs that the use of the K-mean
cluster algorithm after the KPCA brings no significant
improvement for clustering results. Due to the added
complexity and time for computing of the K-mean cluster,
our defense strategy may not benefit with the K-mean cluster
added.

Figure 3 shows the ability of the proposed defense
algorithm and depicts how it compares with that proposed by
Tolpegin [1].

In the first row, we can see the results when the PCA
defense algorithm is used. In the second row, we can see the
algorithm with KPCA; and in the third row, we have the
algorithm used in KPCA but with K-means added. From the
plots figure, it can be seen that the malicious updates differ
from honest updates and how much the different algorithms
can differentiate between them. Comparing the three rows, it
can be seen that KPCA differentiates better than PCA and that
there is little difference between using K-mean and not using
it. Thus, using KPCA in the defense algorithm is the better
course of action.

VI. CONCLUSION AND FUTURE DIRECTION

This paper reports on a successful attempt to detect and
mitigate data-poisoning attacks in FL by employing
dimensionality-reduction and clustering techniques. FL is a
crucial system which is preferred due to the distributed nature
of its networks. However, the distributed property of FL
poses serious threats to data poisoning, as data in an FL
system is not shared across the central server while malicious
participants and malign activities can be overlooked. For this
purpose, the research carried out by Tolpegin and others has
provided a guiding path to the resolution of data poisoning
within the FL system. PCA can help the FL system to identify
malicious attempts. However, this solution is not sufficient to
rebut the threats posed by data-poisoning attacks. For this
purpose, this study projects the use of KCPA and K-Means
instead of PCA. The result of the experiment shows that using
KPCA instead of PCA is more effective in defense against
poisoning attacks in an FL system. In the future, we will
conduct experimental research on other defense strategies
concerning the remaining types of data-poisoning attacks,
such as the backdoor attack. Also, we will explore and
analyze the empirical basis of the effectiveness of other
dimensionality-reduction algorithms for mitigating
vulnerabilities in the FL system.

REFERENCE

[1] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data

poisoning attacks against federated learning systems,” Computer

Security – ESORICS 2020, pp. 480–501, 2020.

[2]C. Xie, K. Huang, P. Chen, and B. Li, "Dba: Distributed

backdoor attacks against federated learning," In International

Conference on Learning Representations. 2019.

[3] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov,

“How to backdoor federated learning,” In S. Chiappa & R.

Calandra (Eds.), Proceedings of the Twenty Third International

Conference on Artificial Intelligence and Statistics, vol. 108, pp.

2938–2948, 2020.

[4] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can

you really backdoor federated learning?” ArXiv, 2019.

[5] W. Wei, L. Liu, M. Loper, K.H. Chow, M.E. Gursoy, S. Truex,

and Y. Wu, “A framework for evaluating gradient leakage attacks

in federated learning,” arXiv, 2020.

[6] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under

the gan,” In proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, 2017.

[7] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov,

“Exploiting unintended feature leakage in collaborative learning,”

2019 IEEE Symposium on Security and Privacy (SP), 2019.

[8] L. Zhu and S. Han, “Deep leakage from gradients,” Lecture

Notes in Computer Science, pp. 17–31, 2020.

[9] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive

privacy analysis of deep learning: Passive and active white-box

inference attacks against centralized and federated learning,” 2019

IEEE Symposium on Security and Privacy (SP), pp. 739–753, 2019.

[10] S. Truex, L. Liu, M. E. Gursoy, L. Yu, and W. Wei,

“Demystifying membership inference attacks in machine learning

as a service,” IEEE Transactions on Services Computing, 2019.

[11] C. Wu, X. Yang, S. Zhu, and P. Mitra, “Mitigating backdoor

attacks in federated learning,” arXiv, 2020.

[12] C. Fung, C.J. Yoon, and I. Beschastnikh, “Mitigating sybils in

federated learning poisoning,” arXiv, 2018.

[13] S. Prakash and A.S. Avestimehr, “Mitigating byzantine attacks

in federated learning,” arXiv preprint arXiv:2010.07541, 2020.

[14] S. Fu, C. Xie, B. Li, and Q. Chen, “Attack-resistant federated

learning with residual-based reweighting,” arXiv preprint

arXiv:1912.11464, 2019.

[15] F. Tahmasebian, J. Lou, and L. Xiong, “RobustFed: a truth

inference approach for robust federated learning,” arXiv preprint

arXiv:2107.08402, 2021.

[16] A. Paudice, L. Muñoz-González, and E. C. Lupu, “Label

sanitization AGAINST LABEL Flipping poisoning attacks,”

ECML PKDD 2018 Workshops, pp. 5–15, 2019.

[17] B. Nelson, M. Barreno, F.J. Chi, A.D. Joseph, B.I. Rubinstein,

U. Saini, C. Sutton, J.D. Tygar, and K. Xia, “Exploiting machine

learning to subvert your spam filter,” LEET, 8, pp.1-9, 2008.

[18] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li,

“Automated poisoning attacks and defenses in malware detection

systems: An adversarial machine learning approach,” Computers

& Security, vol. 73, pp. 326–344, 2018.

[19] B.I. Rubinstein, B. Nelson, L. Huang, A.D. Joseph, S.H. Lau,

S. Rao, N. Taft, and J.D. Tygar, “Antidote: understanding and

defending against poisoning of anomaly detectors,” In Proceedings

of the 9th ACM SIGCOMM Conference on Internet Measurement,

pp. 1-14, 2009.

[20] M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan, and N.

K. Jha, “Systematic poisoning attacks on and defenses for machine

learning in healthcare,” IEEE Journal of Biomedical and Health

Informatics, vol. 19, no. 6, pp. 1893–1905, 2015.

[21] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok:

Security and privacy in machine learning,” 2018 IEEE European

Symposium on Security and Privacy (EuroS&P), pp. 399–414,

2018.

[22] M. Fang, G. Yang, N. Z. Gong, and J. Liu, “Poisoning attacks

to graph-based recommender systems,” Proceedings of the 34th

558

Annual Computer Security Applications Conference, pp. 381–392,

2018.

[23] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks

against support vector machines,” arXiv preprint arXiv:1206.6389,

2012.

[24] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning

attacks to byzantine-robust federated learning,” In 29th Security

Symposium, pp. 1605-1622, 2020.

[25] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F.

Roli, “Is feature selection secure against training data poisoning?”

In international conference on machine learning, pp. 1689-1698,

2015.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.

Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, and A.

Desmaison, “Pytorch: An imperative style, high-performance deep

learning library,” Advances in neural information processing

systems, 32, pp.8026-8037, 2019.

[26] A. Krizhevsky and G. Hinton, “Learning multiple layers of

features from tiny images,” 2009.

[27] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel

image dataset for benchmarking machine learning algorithms,”

arXiv preprint arXiv:1708.07747, 2017.

[28] D. Napoleon and S. Pavalakodi, “A new method for

dimensionality reduction Using KMEANS clustering algorithm for

high dimensional data set,” International Journal of Computer

Applications, vol. 13, no. 7, pp. 41–46, 2011.

[29] C. Ding and X. He, “K-means clustering via principal

component analysis,” Twenty-first international conference on

Machine learning - ICML '04, vol. 29, 2004.

[30] F. Anowar, S. Sadaoui, and B. Selim, “Conceptual and

empirical comparison of dimensionality reduction Algorithms

(PCA, Kpca, LDA, MDS, SVD, LLE, Isomap, LE, ICA, t-SNE),”

Computer Science Review, vol. 40, p. 100378, 2021.

[31] L. Van Der Maaten, E. Postma, and J. Van den Herik,

“Dimensionality reduction: a comparative,” J Mach Learn Res,

10(66-71), p.13, 2009.

[32] A. García-González, A. Huerta, S. Zlotnik, and P. Díez, “A

kernel Principal Component Analysis (kPCA) digest with a new

backward mapping (pre-image reconstruction) strategy,” 2020.

559

