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Abstract—Federated learning is a popular machine-learning 

technique that is often preferred due to its efficiency and data 

privacy. However, federated-learning systems face a serious 

threat of data poisoning that can cause the systems and 

predictions to fail if not treated in time. This study extends 

another study of data-poisoning attacks in federated-learning 

systems conducted by Tolpegin et al. We first investigate the 

effectiveness of the defense strategy suggested in Tolpegin’s 

study. Then we propose an improved defense strategy that 

emphasizes employing KPCA and K-mean clustering. It is 

demonstrated in this paper that our defense strategy, when 

combined with improved dimensionality-reduction algorithms, 

produces better results in defending against data-poisoning 

attacks in federated-learning systems.  

 
Keywords: federated learning; data poisoning; label flipping; 

KPCA 

I. INTRODUCTION 

Federated learning (FL) is a popular machine-learning 
(ML) technique that is often preferred over traditional ML 
because it is faster, more efficient, and offers greater data 
privacy. However, FL systems face a serious threat of data 
poisoning that can cause the systems and predictions to fail if 
they are not treated early on [1].  

This paper aims to contribute a defense strategy for FL 
systems because current FL systems are very vulnerable to 
data-poisoning attacks. In this paper, we examine the 
effectiveness of Tolpegin’s defense strategy against data-
poisoning attacks in FL systems. Then we propose an 
improved defense strategy which uses kernel principal 
component analysis (KPCA) and K-mean. Lastly, we 
compare the results of the experiments on the effectiveness 
of different defense strategies in a controlled environment.  

The organization of this paper is as follows. In Section 2, 
the existing literature is reviewed which relates to the 
detection and mitigation of data poisoning in FL systems. A 
high-level overview of the FL system, data-poisoning attacks, 
and clustering techniques is presented in Section 3. In Section 
4, we described the setup for the experiment along with the 
proposed defense solution. In Section 5, findings from the 
experiment are explained on the basis of the resulting outputs. 
Finally, we draw the conclusion and describe future work that 
can be done on the area.  
 

II. RELATED STUDIES 

The trustworthiness of the new model is a considerable 
problem, as ML is being applied to every field. Therefore, 
trustworthiness needs to be considered before we can believe 
in the results of ML [1]. Traditional ML is slower than FL 
because the new model can be trained faster and more 
efficiently and the privacy of the raw data is ensured. 
However, few relevant studies have been done on counter-
poisoning attacks on FL; instead, the focus is on traditional 
ML [1]. With increase in the popularity of FL, there is a need 
to work on its vulnerabilities, as there are various FL attacks: 
e.g., backdoor attacks, gradient-leakage attacks, and 
membership-interference attacks [2]-[10].  

There are two types of poisoning attacks in FL: model 
poisoning and data poisoning. This study falls in the data-
poisoning category. An aggressor can manipulate training-
data labels by using the label-flipping attack, thereby 
poisoning the data. The model is not interfered with anyway, 
and it runs smoothly [1]. On the other hand, model-poisoning 
attacks target the model, leading to high error rates in the 
model and causing the FL system to fail. However, model 
poisoning is hard to implement, as it requires expert 
poisoning participants to execute successfully. Data 
poisoning, on the other hand, can be done by non-expert 
participants [1]. Therefore, data poisoning is preferable and 
is used more frequently, as it can be done easily.  

To detect and mitigate various FL attacks, Chen et al. [11] 
introduced a federated-pruning method to remove redundant 
neurons in the network and adjust the model’s extreme 
weight values. Fung et al. [12] proposed a novel defense for 
FL Sybil attacks that identifies poisoning Sybils based on the 
diversity of client updates in the distributed-learning process. 
Prakash and Avestimehr [13] proposed a strategy to 
mitigating FL Byzantine behaviors in heterogeneous data-
distribution settings by comparing each client’s update with 
a guiding update of that client. Fu et al. [14] designed an 
aggregation algorithm which combines repeated median 
regression with a reweighting scheme in iteratively 
reweighted least squares. In addition, Tahmasebian et al. [15] 
proposed a robust aggregation algorithm inspired by truth-
inference methods used in crowdsourcing by incorporating 
the worker’s reliability into aggregation. Moreover, some 
studies have considered data-poisoning attacks and their 
defense systems that are more closely related to ML systems 
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and less concerned with the FL system that is under 
consideration [16]. These studies examined defense systems 
like server-side defense and anomaly detection/k-NN. Other 
related works have analyzed different types of data-poisoning 
attacks such as spam filtering [17], malware and network 
anomaly detection [18], [19], disease diagnosis [20], computer 
vision [21], and recommender systems [22]. 

III. PRELIMINARIES 

A. Federated Learning 

Machine learning has become a popular tool for 
predicting outcomes, whereas federated learning is an ML 
technique. Since the prediction of ML depends upon the data 
provided to it, and since large amounts of data increase, the 
prediction-accuracy management of data becomes a 
cumbersome task [1]. Another problem associated with ML 
is how can the data models be considered accurate, that is, 
how trusted they are. Privacy of the data also causes concern 
when data is collected for the model. Federated learning 
offers a solution to these problems because, instead of sharing 
raw data, participants need to share only their model 
parameters [1]. Therefore, a global data model is created 
wherein all the individual participants send their model 
parameters to a central server and are made through this 
collection. This makes FL much more efficient and faster 
than traditional ML, since each participant only needs to train 
his or her local dataset. The global model is updated by 
aggregating the local dataset model updates sent by the 
participants [1]. Since the aggregation of the individual 
participants makes this dataset, there is no centralized server 
curator to verify it. As such, the FL system is left vulnerable 
to poisoning attacks. 

B. Vulnerability in FL System 

The scenario considered in the experiment involves a 
group of participants in the FL system who under the 
influence of a malicious adversary. The percentage of the 
participants under control of the malicious adversary can be 
denoted as m. Those participants are used to poison the global 
model for a set number of rounds in the FL system. Rather 
than target all the model’s classes, the adversary’s objective 
is to alter the learned parameters for a specific class so that 
the final model, M, has a high error rate [1]. As a result, the 
adversary’s attack is a targeted poisoning attack instead of an 
untargeted attack, which aims for high errors across all 
classes in the global model [1], [23]-[25]. Targeted attacks 
have the advantage of being hard to detect, as their influence 
is limited only to the class they affect and all other classes 
function normally. 

C. Label-Flipping Attacks  

In label-flipping, also known as data poisoning, an 
attacker can control the labels assigned to the training data. 
By flipping the labels, the performance of the FL system can 
be seriously diminished even if only a fraction of the training-
point labels have been flipped. For example, changing the 
labels of the airplane class to that of the dog class in the 
CIFAR-10 database is a successful label-flipping attack. 

Since an FL system can have m of malicious participants, this 
label-flipping attack can cause the global model to have a 
high error rate.  

There is no centralized authority to validate data in the FL, 
which makes it vulnerable to data poisoning. Data poisoning 
can be done by aggressors who appear in the form of 
participants on the FL system. These may either have 
malicious intentions or may have been compromised by some 
adversary [1]. The training-data updates provided by them 
can be mislabeled or may have poisonous samples. In the 
absence of a central authority, the updates provided by 
adversaries do not get filtered and, as a result, poison the 
global model being trained. This data poisoning is 
undetectable through ordinary means but can be found 
through dimension-reduction and clustering algorithms [1]. 
Using these, the updates of honest participants can be 
differentiated from those of aggressors by saving the data 
from being poisoned. 

IV. ANALYSIS OF DEFENSE STRATEGIES AGAINST LABEL-
FLIPPING ATTACKS IN FL 

This study extends Tolpegin et al.’s study of data-
poisoning attacks of FL systems. From Tolpegin’s study, we 
see the effectiveness of a targeted poisoning attack against the 
FL system and the potential for a dimensionality algorithm to 
defend against such poisoning attack. We improve upon 
Tolpegin’s study by using a specific dimensionality-
reduction algorithm with clustering and proving its 
superiority. More specifically, we use KPCA instead of 
principal component analysis (PCA) because of KPCA’s 
advantages over the latter, and we use k-mean clustering for 
noise reduction. In addition, to render the experiment 
controlled and accurate, the same framework and dataset used 
by Tolpegin et al. were also adapted for our study.  

A. Federated-Learning System Setup 

In the experiment, the FL system is implemented in the 
PyTorch library available in the programming language 
Python [25]. There is one central aggregator and N-50 
participants by default in the setup, k = 5. The distribution of 
the training dataset among the participants is uniform and 
random relative to the total training dataset. Furthermore, 
each participant is assumed to have a distinct set of training 
data. We applied the independent distribution methodology 
and used identically distributed data (IID) on the data to 
accomplish this. Each participant Pi’s training dataset Di 
contains no testing data, as testing data is used to validate the 
model. Hence, it is not required to be given to the participants. 
The FL experiment is set to run for R=200 rounds in total 
because it has been observed that the DNN coverage of both 
models is less than 200 training rounds. 

B. DNN Architecture Setup 

The CIFAR-10 [26] and Fashion-MNIST [27], two 
famous image-classification datasets, have been used in the 
current scenario. There are 10 object classes in CIFAR-10, 
each of which has 6,000 images for a total of 60,000 images, 
all of which are all colored [1]. The CIFAR1-10 has object 
classes such as frogs, horses, and airplanes [26]. The CIFAR-
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10 dataset is divided into batches of 10,000 images, with five 
batches kept for training data and one kept for training the 
model. The same is seen in Fashion-MNIST, which is divided 
into six batches, each with 10,000 images. Similarly, five are 
kept for training the dataset, and the remaining one is used for 
validating the model. The images in Fashion-MNIST are 
greyscale and are associated with 10 classes of clothing such 
as dresses, shirts, and sneakers [27]. Tables 1 and 2 show the 
DNN architecture used in both the datasets:  

TABLE I. THE DNN ARCHITECTURE USED IN CIFAR1-10 

Layer Type Size 

Conv+Relu+Batch Norm 3*3*32 

Conv+Relu+Batch Norm 3*32*32 

Max Pooling 2*2 

Conv+Relu+Batch Norm 3*3*32 

Conv+Relu+Batch Norm 3*32*32 

Max Pooling 2*2 

Conv+Relu+Batch Norm 3*3*32 

Conv+Relu+Batch Norm 3*32*32 

Max Pooling 2*2 

Fully Connected 2048 

Fully Connected+Softmax 128/10 

TABLE II. THE DNN ARCHITECTURE USED IN FASHION-MNIST 
Layer Type Size 

Conv+Relu+Batch Norm 5*1*16 

Max Pooling 2*2 

Conv+Relu+Batch Norm 5*16*32 

Max Pooling 2*2 

Fully Connected 1568/10 
 

The DNN architecture used for CIFAR-10 has a test 
accuracy of ~78% without poisoning. From the table, we can 
see that, to accomplish this in CIFAR-10, we use six 
convolutional layers, batch normalization, a rectified linear 
activation function (ReLU), three max-pooling layers, and 
two fully connected dense layers with one running SoftMax. 
For the Fashion-MNIST setup, we use a two-layer 
convolution network, batch normalization, ReLU, two max-
pooling layers, and one fully connected dense layer. The 
resulting DNN architecture, in this case, has a test accuracy 
of ~91% without poisoning. 

C. Label-Flipping Attack Setup 
For the experiment to mimic a label flipping attack in an 

FL system with N participants, of which m are malicious. We 
first randomly assigned a number of participants (N) for the 
experiment. Then N x m of participants (P) were randomly 
identified as malicious at the start of each experiment, and the 
remaining were identified as honest. However, to make the 
experiment more accurate, we considered the effect caused 
by malicious participants chosen randomly; so, each of the 
experiments were replicated 10 times, and the average result 
was taken as the final value. As a result, the value of m is set 
to 10 percent in the experiment (that is, m = 10%). Three 
label-flipping attacks settings were explored in the 

experiment to represent a broad set of conditions an adversary 
could use to approach an FL system to attack. The following 
were the conditions used in the experiment: 

• In the first case, the source class was very 

frequently misclassified as the target class.  

• In the second case, the source class was very 

infrequently misclassified as the target class. 

• The third case is a combination of the first and 

second cases.  
The class labels used from CIFAR-10 for testing for the 

first case were dog to cat. In the second case, we used airplane 
to bird labels; and in the third case, we tested the automobile 
to the truck. In the case of Fashion-MNIST, the class labels 
used for the first one were shirt to t-shirt/top. Trouser to dress 
were used for the second case and coat to the shirt were used 
for the third case. 

D. Defense Strategy Feasibility 
We first checked the defense strategy employed by 

Tolpegin et al. and then introduced our proposed defense 
strategy. A defense strategy needs to be implemented so that 
the FL system can defend against the label-flipping attack 
discussed so far. The defense needs to be such that it can 
defend against highly effective adversaries. For this, an 
algorithm needs to be introduced in the FL system so that the 
aggregator can identify malicious participants. By using the 
algorithm proposed in Tolpegin’s study [1], an aggregator 
can identify the malicious participants in the FL system. After 
these malicious participants have been identified, the 
aggregator can either choose to blacklist them or ignore their 
updates for the upcoming rounds. 

The basis of the defense strategy used is that a 
dimensionality-reduction algorithm can catch malicious 
updates because the parameter updates contain unique 
characteristics. However, since DNNs have many parameters, 
manually checking for these malicious parameter updates is 
challenging. In contrast, as seen in the paper, an automated 
approach can use PCA, which is a dimensionality-reduction 
algorithm, to find and filter the parameters sent by the 
malicious updates. 

Figure 1 shows the results generated from the experiment 
regarding the impact on the number of malicious participants 
in the global model. 

 

 
a) CIFAR1-10 
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b) Fashion-MNIST 

Figure 1. The source recall and global model accuracy obtained by 

attacking CIFAR-10 and Fashion-MNIST by the m% adversaries 

 
The factors considered here are the percentage of 

malicious participants, that is, the m of the participant effect 
on the global model accuracy and source class recall. The m 
used for this step ranges from two to 50 percent. From the 
results, it can be seen that as m increases, the test accuracy of 
the global model decreases. Furthermore, even with a small 
m, the global-model test accuracy still decreases compared to 
that of a non-poisoned model, but the source-class recall of 
the model exhibits an even more significant decrease in this 
case. When m is 40%, the global model test accuracy drops 
from 78.3% in the case of the non-poisoned model to 74.4% 
in the poisoned scenario for CIFAR-10. Similarly, the source-
class recall falls to 0%. Fashion-MNIST shows a similar case 
of global-model test accuracy and source-class recall. For 
example, when m is four percent, the source class decreases 
by about 10 percent. By this, we can see that even if an 
adversary controls a very small percentage of participants, he 
or she can still cause the global model accuracy to drop. Thus, 
even a few participants under the control of an adversary can 
significantly impact an FL system. Though both datasets are 
vulnerable to label-poisoning attacks, there is a difference in 
the degree of vulnerability. From the results of the experiment, 
it can be seen that CIFAR-10 is more vulnerable than 
Fashion-MNIST. During the experiment, we also found that 
it is not essential for the adversary to identify the most 
vulnerable source and target-class combination. Because 
there is not necessarily a correlation between attack 
effectiveness and misclassification performance for the non-
poisoned model, we can see from the above section that, after 
the elimination of malicious participation, a high-utility 
convergence can eventually be achieved. The possibility of 
such a recovery from early-round attacks supports the case 
for using the proposed detection technique as a defensive 
strategy. This finding is consistent with Tolpegin’s study. 
The result shown above also verifies that Tolpegin’s 
proposed algorithm indeed reduces the effect of label-
flipping attacks on FL systems. 

 

E. Defending Against Label-Flipping Attacks with KPCA 

What follows is the algorithm to be used instead of the 
one proposed by Tolpegin’s study [1]: 
 

Algorithm 1: KPCA 

function kpack (x, sigma, cls, target-dim) 

#Data extraction 

     psize ← size(𝑥) 

     𝑚 ← psize(1) 

     𝑛 ← psize(2) 

#Sampleing kernel matrix 

     l ← ones(m, m) 

for i ∈ (1,m) do    

                  for j ∈ (1,m) do  

 𝑘(i,j) ← kernel (𝑥(i,:),x(j,:),cls, sigma) 

#Computing kernel absolute value after extraction 

𝑘1 ← k-1*k/m-k*l/m+l*k*l/(m*m)  

#calculate signal values and eigenvalues 

[𝑣, 𝑒] < eig(𝑘1)  

𝑒 ← diag (𝑒)   

# Filtering eigenvalues and eigenvectors 

[dump, index] ← sort(e, 'descend')  

𝑒 ← 𝑒(index)  

𝑣 ← 𝑣(: ,index )  

rank ← 0  

for i ∈ (1,size(𝑣, 2)) do  

   if 𝑒(𝑖) < 𝑙𝑒 − 6   then   

break 

else 

𝑣(: , 𝑖) ← 𝑣(: ,1) . /sqrt(𝑒(𝑖))  

                rank ← rank + 1 

eigenvectors ← 𝑣(: ,1: target_dim )  

     eigenvalues ← 𝑒(1: target_dim ) 

 #projection 

 project_invectors ← 𝑘1* eigenvectors  

 
In Algorithm 1, we first performed data extraction on 

KPCA to obtain the number of samples m, the sample 
dimension n, and a matrix with m rows, and n columns with 
weighting value of 1. Use it to calculate the kernel matrix K 
according to the kernel formula, then centralize K to obtain 
the centralized kernel matrix Kl, and then calculate the 
eigenvalue v and eigenvector e of the decentralized Kl. Next 
sort e in descending order, then filter the eigenvalues and 
eigenvectors by traversing each column of eigenvalue v. 
Finally, calculate the project intectors of the centered kernel 
matrix k1 on the eigenvectors. 

Algorithm 2 enables the aggregator to identify malicious 
participants. Let R denote the vulnerable FL training round 
set. Let P denote the participant set and PT denote the current 
global model parameters. For each round r ∈ R, find the set 
of participants Pr queried in the participant set P of this round 
and the global model parameter PTr-1 of the previous round. 
Then update the model parameters for each participant after 
training the DNN, and at the same time the aggregator 
calculates the incremental 𝑃𝑇𝛥,𝑖  by comparing the 
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participant-model update with the global-model update. Then 
connect the parameters in 𝑃𝑇𝛥,𝑖  to the source-class output 

node and add the result to PT. Finally, obtain the result via 

standardization, dimensionality reduction, and clustering on 
PT. 

 

Algorithm 2: An improve algorithm for identify malicious model updates in FL using KPCA 

def evaluation update (𝑅: set of vuluerable train rounds, P: participant set, U: update )  

𝑃𝑇 =  current global model parameter   

for each round 𝑟 ∈ 𝑅 do   

𝑃𝑟: participants in 𝑃 queried in train round 𝑟  

𝑃𝑇𝑟−1 : Global model parameters after training round 𝑟 − 1  

for participant 𝑃𝑖 ∈ 𝑃𝑟 do   

𝑃𝑇𝑟,𝑖: updated parameters after train DNN (𝑃𝑇𝑟−1)  

                           𝑃𝑇𝛥,𝑖 = 𝑃𝑇𝑟,𝑖 − 𝑃𝑇𝑟 : "Aggregator computes delta in participant's model update compared to the global" 

 

𝑃𝑇
𝑠𝑟𝑐

𝛥,𝑖
: parameter in 𝑃𝑇𝛥,𝑖 connect to source class output node   

Add 𝑃𝑇
𝑠𝑟𝑐

𝛥,𝑡
 to 𝑃𝑇  

𝑃𝑇 ′ =  standardize (𝑃𝑇)  

𝑃𝑇″ =  dimensionality_reduction (𝑃𝑇 ′)  

𝑃𝑇‴ = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑃𝑇″)  

𝑃𝑙𝑜𝑡(𝑃𝑇″, 𝑃𝑇‴)  

 
Using this algorithm, we can successfully identify the 

malicious participants in the FL system. In the case of PCA, 
this algorithm is used for dimensionality reduction when the 
feature space contains too many irrelevant or redundant 
features. The aim is to find the intrinsic dimensionality of the 
data [28]. The KPCA, on the other hand, can be considered a 
smaller version of PCA [28], [29], but KPCA has advantages 
over PCA. The PCA performs better on linear data. As such, 
it can handle skewed data very effectively when its 
performance with non-linear data is not up to the mark [30]. 
While this may not be a problem in the beginning, it becomes 
difficult for PCA to identify malicious updates if the dataset 
has non-linear data. On the other hand, KPCA can handle 
non-linear data very effectively while also successfully 
handling linear data (such as skewed data) [30], [31]. This was 
seen when both PCA and KPCA were applied to the ECG200 
dataset for a classification comparison. The KPCA separated 
the two classes best [30]. The comparison was a made on a 
number of factors. For example, the quality of data separated, 
the dimension, the F1 score, the runtime, a power analysis 
and the p value were all considered. Another factor that gives 
KPCA an edge over PCA is the topology used for random 
projection, which can sometimes cause the projection to be 
less than optional in the scenario [30]. In the case of KPCA, a 
manifold topology is used, which allows it to detect data 
discrepancies in the lower dimension [30]-[32]. This makes 
KPCA easy to implement and a better choice than PCA for 
the detection of malicious updates, as it covers the weakness 
of the PCA (i.e., PCA can fail to detect malicious updates in 
non-linear data).  

K-means is a clustering algorithm that returns a natural 
grouping of data points based on their similarity. As such, it 
can be considered a special case of Gaussian mixture models 
[28]. While both K-mean clustering and PCA first seem to 
have very different objectives, in reality, both of them exhibit 

a very deep connection [29]. The connection is such that K-
mean can be considered a scattered PCA. The PCA aims to 
minimize the mean-squared reconstruction error by 
representing all data vectors as a linear combination of a 
small number of eigenvectors [29]. The K-mean also aims to 
minimize the mean-squared reconstruction error by 
representing all data vectors as linear combinations of a small 
number of cluster centroids [29]. It is a common practice to 
apply PCA before a clustering algorithm such as K-mean. It 
is believed that doing so improves the clustering results (that 
is, reduces noise) in practice. 

F. Experiments Setup 

In the experiment, the CIFAR-10 and Fashion-MNIST 
were attacked by an adversary using the methods discussed 
above. The results are shown in a bar graph for four cases. 
For the first case, no dimensionality-reduction algorithm was 
applied the dataset. For the second, only PCA was applied as 
the defense algorithm. The third case used KPCA as a defense 
method, and the fourth used KPCA along with K-mean as the 
method for defense against adversarial attacks on the 
database. The same settings were applied to check both 
accuracy and global models, so each has four related graphs. 
The graphs are also represented by four colors, and each of 
the cases has one. Black is for Case 1, blue is for Case 2, green 
is used to represent Case 3, and Case 4 is represented by red. 

On the other hand, the second experiment was conducted 
to check how well the proposed algorithm (Algorithm 2). The 
two-dimensional plot shows how effective the algorithm can 
be when using KPCA and K-means to help identify malicious 
updates sent by adversaries from honest updates. The blue 
color in the plot is for the malicious updates, and yellow is 
used to denote the updates sent by honest participants. The 
plots are drawn from the output generated by the proposed 
algorithm. 
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V. RESULTS COMPARISON AND ANALYSIS 

Figure 2 shows bar graphs for two datasets for the data-
poisoning effect on source recall and model accuracy. The 
values for m (that is, the number of malicious participants for 
both experiments) were set from zero to 50 percent. For 
model accuracy, the values were between 72 to 79 in CIFAR-

10, while the source-recall values for CIFAR-10 are between 
zero to 80. In Fashion-MNIST, the values for model accuracy 
were between 84 and 92. Source recall for Fashion-MNITS 
has values between 10 and 90. The graphs offer a comparison 
of four states (that is, when the FL system is not provided 
with any defense from data poisoning). The results for both 
of the datasets are discussed below. 

 

 

 
a) CIFAR1-10 

 

 
b) Fashion-MNIST 

Figure 2. The source recall and global model accuracy obtained by attacking the CIFAR-10 and Fashion-MNIST by m adversaries under various defend 

strategies 

 
In the first case, it can be seen from the graph in black 

color that, with an increase in the number of malicious 
participants, the accuracy falls from the original 78 percent. 
The fall is at first gradual, but when the percentage of 
malicious participants increases from 10 percent, the 
accuracy drops sharply. From 40 to 50 percent, the accuracy 
does not drop any further and stays at a constant low point. 
The source recall of the model suffers the same fate when the 
percentage of malicious participants in the FL system is 
greater than 10 percent, and it drops sharply. Moreover, after 
the percentage of malicious participants is greater than 30 
percent, the source recall of the model falls to zero. The 
second case is depicted in the blue graph on the occasion 

when PCA is used in the defense against data poisoning. 
From the graph, it can be seen that there is a minimal fall in 
accuracy when the percentage of malicious participants is 
two, and there is no further drop in accuracy until the 
percentage is increased to four. After four percent, there is a 
sharp drop to 10 percent, and then there is no further drop in 
accuracy until 20 percent. However, after 20 percent, there 
are sharp falls for every 10 percent increase in the number of 
malicious participants. The third case is for using KPCA 
instead of PCA and is represented by the green graph. The 
green graph shows that, compared to the blue one (that is, 
when PCA was used), there is a smaller drop in accuracy 
compared. When KPCA is applied, there is no drop in 
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accuracy until the percentage of malicious participants is 
greater than four percent, while in PCA, the drop in accuracy 
starts from when the percentage is greater than two percent. 
The red graph (that is, KPCA with K-means) shows a similar 
result, with a slight increase in reduction of accuracy. 

However, K-means is a time-consuming process; hence, it is 
not the optimal choice. A similar trend can be seen in the 
source recall. As such, it can be seen that KPCA performs 
best for defending against data-poisoning attacks.  

 

 

 

 
a) CIFAR1-10 

 

 

 
b) Fashion-MNIST 

Figure 3. The effectiveness of the proposed algorithm in distinguishing malicious updates from honest updates 
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The same scenario as the one discussed in CIFAR-10 can 
be seen as compared to the other graphs the green one that is 
KPCA performs best as the drop in accuracy and recall is the 
lowest, thereby giving further support to the theory that the 
proposed defense strategy counters the weakness of the FL 
system with respect to data-poisoning attacks. We can see 
from the green and red graphs that the use of the K-mean 
cluster algorithm after the KPCA brings no significant 
improvement for clustering results. Due to the added 
complexity and time for computing of the K-mean cluster, 
our defense strategy may not benefit with the K-mean cluster 
added. 

Figure 3 shows the ability of the proposed defense 
algorithm and depicts how it compares with that proposed by 
Tolpegin [1]. 

In the first row, we can see the results when the PCA 
defense algorithm is used. In the second row, we can see the 
algorithm with KPCA; and in the third row, we have the 
algorithm used in KPCA but with K-means added. From the 
plots figure, it can be seen that the malicious updates differ 
from honest updates and how much the different algorithms 
can differentiate between them. Comparing the three rows, it 
can be seen that KPCA differentiates better than PCA and that 
there is little difference between using K-mean and not using 
it. Thus, using KPCA in the defense algorithm is the better 
course of action. 

VI. CONCLUSION AND FUTURE DIRECTION 

This paper reports on a successful attempt to detect and 
mitigate data-poisoning attacks in FL by employing 
dimensionality-reduction and clustering techniques. FL is a 
crucial system which is preferred due to the distributed nature 
of its networks. However, the distributed property of FL 
poses serious threats to data poisoning, as data in an FL 
system is not shared across the central server while malicious 
participants and malign activities can be overlooked. For this 
purpose, the research carried out by Tolpegin and others has 
provided a guiding path to the resolution of data poisoning 
within the FL system. PCA can help the FL system to identify 
malicious attempts. However, this solution is not sufficient to 
rebut the threats posed by data-poisoning attacks. For this 
purpose, this study projects the use of KCPA and K-Means 
instead of PCA. The result of the experiment shows that using 
KPCA instead of PCA is more effective in defense against 
poisoning attacks in an FL system. In the future, we will 
conduct experimental research on other defense strategies 
concerning the remaining types of data-poisoning attacks, 
such as the backdoor attack. Also, we will explore and 
analyze the empirical basis of the effectiveness of other 
dimensionality-reduction algorithms for mitigating 
vulnerabilities in the FL system. 
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