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Abstract—Real-time path planning typically aims to obtain a 
collision-free and shorter path with lower computational com-
plexity for UAVs in unknown environment. Apart from the above 
basic objective, kinematic constraints and the smoothness of 
path should be further considered especially for fixed-wing UAVs 
restricted by their maneuverability. In this paper, we propose 
an adaptive real-time path planning method based on Deep 
Reinforcement Learning. Taking the sensor data of obstacles 
nearby and the target’s position relative to the UAV as the de-
cision information, and designing the action satisfying kinematic 
constraints of fixed-wing UAV, the proposed method can plan 
a feasible path for fixed-wing UAV in real-time. Experimental 
results show that the adaptive action devised combining with 
greedy reward, granularity reward and smoothness reward can 
accelerate the convergence speed of the algorithm and enhance 
the smoothness of the planned path.

Keywords: adaptive, real-time path planning, deep rein-
forcement learning, UAV, fixed-wing

I. INTRODUCTION

Today, Unmanned Aerial Vehicles (UAVs) have been widely 
applied in military and civilian tasks. As a basic task for 
UAVs, real-time path planning aims to obtain a path satisfying
the desired requirements from the origin to the predefined 
destination without knowing environmental information in 
advance. Regarding the requirements, collision-free path to 
ensure the safety of UAV, shorter path to save fuel and time 
and lower computational complexity to generate a path in real-
time are the typical performance pursued by real-time path 
planning algorithms. Moreover, the consideration of kinematic
constraints and the smoothness of path are also significant 
requirements, especially for fixed-wing UAVs restricted by
their maneuverability. If a planned path demands many agile 
or abrupt maneuvers, it would be difficult or even unfeasible
to track. In this paper, the research effort focuses on real-
time path planning with the kinematic constraints of fixed-
wing UAVs, e.g., the limitations of yaw rate and flight speed.

For real-time path planning, a multitude of methods have
been proposed, including map-based methods and map-less
methods. Dynamic A* (D*) [1], Lifelong Planning A* (LPA*)
[2] and D* Lite [3], as the classic map-based algorithms,
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search the optimal path of a graph in which the latest de-
tected information of obstacles is updated. However, when
confronted with high-dimensional data on obstacles detected
by airborne sensors (e.g. radar, camera, range finder, etc.)
from unknown environments, the map-based methods exhibits
some limitations owing to the difficulties in mapping. It can
be challengeable to both extract the effective information of
obstacles from high-dimensional sensor data and construct
an appropriate map that balances well the accuracy and the
complexity of the representation of obstacles. Furthermore,
when the unknown environment for real-time path planning is
dynamic, it will make the constructed map lose timeliness and
become inaccurate. In terms of the map-less methods, instead
of mapping first and then re-planning, the most common
way utilizes the reactive behavior where the planner of real-
time path planning makes decisions directly based on the
obtained information of obstacles, the target, etc., which helps
them bypass the challenges caused by mapping. Nevertheless,
for traditional reactive methods such as Bug algorithm [4],
Artificial Potential Field [5] and Fuzzy Logic [6], they still
exist the limitation of extracting the high-dimensional sensor
data effectively.

Deep Reinforcement Learning (DRL), integrating the pow-
erful perception and representation ability of deep neural
network to deal with high-dimensional decision information
and the learning ability for decision-making of reinforcement
learning through trial-and-error, has been applied in [7], [8].
As a learning-based reactive algorithm for real-time path
planning, DRL demonstrates the potential to overcome the
aforementioned challenges. For this reason, we resort to an
excellent DRL algorithm, Deep Q-Network (DQN) [9], to
address real-time path planning in unknown environment.

In terms of fixed-wing UAVs, in order to make the planned
path meet their kinematic constraints, the yaw rate, as an
action of DRL agent, is designed to satisfy the constraint of
the maximum yaw rate. In addition, the time step, regarded
as the other action of the agent, is designed to be variable,
compared to the fixed time step, which is utilized to provide
an adaptive action to cope with the environment under different
granularities, where the agent can take a longer time step
when confronts with a relatively open environment, whereas
a shorter time step can be taken in a relatively narrow envi-
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ronment. Obviously, variable time step can effectively avoid
the contradiction between the loss of path accuracy in a short
time step and the reduction of algorithm efficiency in a long
one.

This work mainly contributes to the following two aspects:
• Based on DRL, the adaptive real-time path planning

approach is proposed, which not only takes consideration
of the kinematic constraints of fixed-wing UAV, but also
has the adaptive ability to deal with the environment
under different granularities.

• In the reward design, in addition to basic reward, greedy
reward is designed to accelerate the convergence speed of
the algorithm, while granularity reward and smoothness
reward are introduced to reduce the switching times of
maneuvers and enhance the smoothness of the planned
path.

The remainder of this paper is organized as follows. Sec-
tion II investigates the related work. Section III presents
the preliminaries of kinematic constraints of fixed-wing UAV
and DQN algorithm. Section IV introduces our approach
including decision information, adaptive action and reward
design. Experiments under specially designed scenarios are
implemented and analyzed in Section V. Finally, conclusions
and future work are presented Section VI.

II. RELATED WORK

There is a large body of work on real-time path planning
based on the detected high-dimensional environmental data.
In this paper, the literature investigated mainly focuses on
learning-based methods owing to their excellent performance
in feature extraction. One class of learning-based methods for
real-time path planning is Imitation Learning (IL). Pfeiffer et
al. [10] present a target-oriented end-to-end navigation model
for a robotic platform. By imitating those expert demonstra-
tions generated by an existing motion planner, the navigation
model can learn the complex mapping from raw 2D-laser
range findings and a target position to the required steering
commands for the robot. In literature [11], a deep LSTM
model constructed by Long Short-Term Memory networks
imitates the paths generated by a static path planning algorithm
A* and shows that it can improve the global optimization
quality of the path in real-time path planning.

Reinforcement Learning, as another class of learning-based
methods, has been successfully employed to address real-
time path planning problems. For mobile robots, Tai et al.
[12] present an end-to-end mapless motion planner to navi-
gate the nonholonomic mobile robot, which is trained by an
asynchronous DRL algorithm without any manually designed
features and prior demonstrations. Taking the kinematic model
and constraint conditions of mobile robots into account, Yan
et al. [13] propose a DRL based path planning method for
mobile robot under continuous action space. In terms of UAVs,
Sampedro et al. [14] pursue the reactive navigation with fast
collision avoidance capabilities in which an artificial potential
field formulation is adopted to guide the design of reward for

DRL agent. Wang et al. [15] formulate navigation task in large-
scale complex environments as a Partially Observable Markov
Decision Process (POMDP). The navigation model directly
maps UAVs’ raw sensory measurements into control signals
and is solved by a novel online DRL algorithm within the
actor-critic framework. Zhao et al. [16] present an actor-critic
model incorporating LSTM networks and a coordination strat-
egy to identify and resolve the problem of collision avoidance
for a variable number of fixed-wing UAVs in limited airspace.
In reference [17], a DRL based path planning algorithm
oriented to large-scale and dynamic environments is proposed,
in which an action selection strategy to reduce the meaningless
exploration and an adaptive experience replay mechanism
based on the frequency of failure are developed to improve
the stability and learning efficiency of Deep Q-Network and
Deep Recurrent Q-Network. Cui et al. [18] present a 2-layer
path planning method where the higher layer deals with the
local information whereas the lower layer deals with the global
information. After obtaining the planned path, B-spline curve
approach is applied for online path smoothing. Different from
the above work which focuses on mobile robots or quadrotor
vehicles, or ignores the constraints of fixed-wing UAVs on
maneuverability, we develop a real-time path planning method
with attention to kinematic constraints of fixed-wing UAVs.

III. PRELIMINARIES

A. Kinematic Constraints of UAV
In this paper, we assume UAV flies at a fixed height,

i.e., the activities of UAV are restricted to the x - y plane.
Consequently, as shown in Fig. 1, a 2-dimensional fixed earth
coordinate system can be used to describe UAV’s absolute
position (xt, yt) and orientation θt at time t, which constitutes
the state of UAV, denoted as

[
xt yt θt

]T
. Given control

input (ωt, vt,∆t) including the yaw rate ωt, the flight speed
vt and the time step ∆t, we can calculate the increment of
orientation and position respectively:

∆θt = ωt∆t

∆xt
∆yt

=


vt/ωt[sin(∆θt − θt) + sin θt]

vt/ωt[cos(∆θt − θt)− cos θt]
, if ωt 6= 0

vt∆t cos θt

vt∆t sin θt
, if ωt = 0

and obtain the kinematic equation or the state transition of
UAV, formulated as:xt′yt′

θt′

 =

xtyt
θt

+

∆xt
∆yt
∆θt


where t′ = t+ ∆t denotes the next decision-making time.

In order to meet the kinematic constraints of fixed wing
UAV and make flight path feasible for it to track, the following
restrictions are imposed on the control input:
• Considering the turning ability of fixed wing UAV, the

yaw rate ωt is limited by the maximum yaw rate ωmax:

ωt ∈ [−ωmax, ωmax] (1)
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• The flight speed vt needs to be within a reasonable range:

vt ∈ [vmin, vmax] (2)

• Considering the detection range of airborne sensors, it is
too dangerous for UAV to go out of detection range under
one decision-making in unknown environment. Thus, the
time step ∆t is limited by UAV’s the maximum detection
range dmax and the flight speed vt:

∆t ∈ (0,
dmax

vt
) (3)

Fig. 1. The state transition of UAV.

B. Measurements

Definition 1 (Path smoothness): The path smoothness is
a measurement of the adjustment amplitude of yaw rate in
turning operations that UAV has made during the whole flight
from origin to target. We define PS as the path smoothness:

PS = 1−
∑N
k=1 |ωtk − ωtk−1

|
2ωmax ·N

∈ [0, 1] (4)

where ωt0 is the initial yaw rate and set to 0, N is the
change times of yaw rate. A larger PS means a smoother
path. Especially, when PS is 1, it indicates that the planned
path is a straight line.

Definition 2 (Success rate): The success rate measures the
proportion of the successful scenarios where the path planner
can obtain a feasible path from origin to destination in all test
scenarios. We define SR as the success rate:

SR =
Msuccess

Mtest
(5)

where Msuccess and Mtest denote the number of the successful
scenarios and all test scenarios, respectively.

Definition 3 (Path length): The path length measures the
distance flying from origin to destination along the planned
path, defined as:

PL =

N∑
k=1

vtk∆tk (6)

Definition 4 (Average step length): The average step length
is a measurement of the average distance interval between two
consecutive plannings in a flight mission, defined as:

ASL =
PL

N
=

∑N
k=1 vtk∆tk

N
(7)

Generally, a smaller ASL means that higher planning fre-
quency and better real-time performance are required for path
planning algorithms.

C. DQN

The sequential decision problems, addressed by reinforce-
ment learning, are generally modeled as Markov Decision
Process (MDP) in which at each time step t, the agent executes
an action At at state St, which results in its transition to a
next state St+1 and receives a reward Rt+1 characterizing the
feedback of the environment toward the action. The agent
improves its policy for decision-making through trial-and-
error in the environment. Concretely, the policy π = p(a|s)
of the agent is optimized by maximizing the expectation of
cumulative future reward for each state-action pair (s, a):

qπ(s, a) = Eπ[

T−t−1∑
k=0

γkRt+k+1|St = s,At = a]

where qπ(s, a) is the action-value function regarding the policy
π, and γ ∈ [0, 1] is the discount factor determining the agent’s
horizon.

DQN, as a typical DRL algorithm, utilizes the deep neural
network to approximate the action-value function q(s, a) to
avoid the dimensional explosion of state space faced by
traditional tabular RL, which results in the parameterized
action-value function q(s, a;w) termed the q-network. The
update rule for the q-network’s parameters w is as follows:

w ← w + α[r + γmaxa′q(s
′, a′;w−)− q(s, a;w)]∇wq(s, a;w)

where α is the learning rate. Besides the q-network, a target
network q(s, a;w−) with lower update frequency than the q-
network is used to enhance the stability of target value r +
γmaxa′q(s

′, a′). The training data is randomly sampled from
the replay memory that stores the experiences generated in
the interaction between the agent and the environment, which
removes correlations in the experiences and helps the training
of RL more stable. When interacting with the environment, ε-
greedy policy is typically taken as the agent’s behavior policy
in DQN.

IV. APPROACH

In this section, we describe the design of state, action and
reward in the MDP formulated by real-time path planning.
To distinguish the state of UAV, the term state used in MDP
below is referred as decision information.
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A. Decision Information

Confronted with unknown environment, UAV to make a
decision in real-time shall at least be capable of obtaining
the following two kinds of information: the observation of
obstacles around UAV and the positional relationship between
target and UAV, which are used to ensure the safety of the
planned path and avoid UAV getting lost, respectively.

In terms of the observation of obstacles around UAV, we
use the distance data from nO range finders which detect
objects from the degree −θmax

O to θmax
O of UAV within the

maximum range dmax
O to characterize it, denoted as stO =(

dt1, d
t
2, ..., d

t
nO

)
and depicted in Fig. 2.

And for the positional relationship between target and UAV,
we use polar coordinates of target’s position in the drone-
centric body coordinate system to represent it, denoted as stT =
(dtT, θ

t
T) and depicted in Fig. 2. Typically, the range of target

azimuth θtT is set as (−π, π].
To summarize, we can obtain the decision information st

used for the agent (i.e., UAV) decision-making at time t by
composing the above two kinds of information:

st =
(
stO, s

t
T

)
=
(
dt1, d

t
2, ..., d

t
nO
, dtT, θ

t
T

)
where n is the number of range finders used.

Fig. 2. Decision information.

B. Adaptive Action

As described in section III-A, the control input consists
of the yaw rate ωt, the flight speed vt and the time step
∆t, satisfying the constraints (1), (2) and (3) respectively.
For simplicity, we assume UAV flies at a fixed speed, i.e.,
vt = vmin = vmax = v0. Excluding the flight speed, we
take the yaw rate and the time step as the agent’s action,
which controls UAV’s maneuvering direction and distance
respectively when executing an action. Since the nature that
DQN is a discrete action RL algorithm, we design the discrete
action set that satisfies the corresponding kinematic constraints
for the yaw rate and the time step, respectively.

• Regarding the yaw rate ωt, as demonstrated in Fig. 3, the
action set Aω for the agent is designed as nω discrete
values:

ωt ∈ Aω = {kωmax

n′ω
| − n′ω ≤ k ≤ n′ω, k ∈ Z}

where n′ω = nω−1
2 and nω = |Aω| is a odd number

greater than 1. For a given time step, the flight distance
to perform each action is the same at a constant flight
speed.

• As for the time step, instead of using a fixed time step, a
variable time step is utilized to provide an adaptive action
to deal with the environment with different granularity,
where the agent can take a longer time step when
confronts with a relatively open environment; otherwise,
it is the opposite. Concretely, we design n∆t linearly
increasing multiples of basic time step ∆t0 as the time
step action set A∆t:

∆t ∈ A∆t = {k∆t0|k = 1, 2, ..., n∆t}

where ∆t0 =
π
4

ωmax
and n∆t∆t0 <

dmax

vt
. Taking ∆t0 as

a time step action, UAV will rotate one-eighth of a circle
when flying at the maximum yaw rate ωmax, as shown
in Fig. 3.

Combining the action set of yaw rate and time step, we get
the 2-dimensional action set A of the agent:

A = Aω ×A∆t = {(ωt,∆t)|ωt ∈ A∆t,∆t ∈ A∆t}

where the size nA of the action set A is nω · n∆t.
It should be noted that DQN does not support multidimen-

sional action directly. We eliminate such gap by building a
bijective mapping f between the 2-dimensional action set A
and the 1-dimensional action set A′ = {1, 2, ..., nA}:

f : A→ A′

When an action a ∈ A is passed from the agent to the DQN,
it will be converted to the corresponding action a′ ∈ A′ by f .
And when an action a′ ∈ A′ is passed from the DQN to the
agent, it will be converted to the corresponding action a ∈ A
by f−1.

Fig. 3. Adaptive action where nω = 5 and n∆t = 4.
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C. Reward Design

Considering that reward plays a key role in the effect and
efficiency of RL algorithm, basic reward and greed reward
are first provided to achieve the basic objective of real-
time path planning and accelerate the convergence speed of
the algorithm, respectively. Besides, smoothness reward and
granularity reward are designed to improve the smoothness of
the planned path and increase the granularity of action.
• Basic reward Rbs is used to tell the agent where the target

is and where the obstacles are, designed as: a positive
reward rT will be given when UAV reaches the target,
whereas a punishment (i.e., negative reward) rO will be
given when UAV collides with an obstacle.

• Greed reward Rgd is based on the greedy strategy that
only utilizes the information of the target but ignores the
information of obstacles to guide UAV to fly towards
the target directly, which can make the agent reduce
some aimless wandering during the training process and
accelerate the convergence speed of RL algorithm. To this
aim, the greed reward is designed as:

rdT · sgn(dt
−

T − dtT) + rθT · sgn(θt
−

T − θtT)

where sgn is the signum function, dtT (θtT) and dt
−

T (θt
−

T )
denote the target distance (the target azimuth) at current
time t and last time t− respectively.

• Smoothness reward Rsm is utilized to reduce unnecessary
switching of the yaw rate between two consecutive ac-
tions and increases the smoothness of the planned path,
which makes it easier to be tracked by UAV. For this
purpose, we design the smoothness reward as:

rω ·
|ωt − ωt− |

2ωmax

where ωt and ωt− denote the yaw rate at current time t
and last time t− respectively.

• Granularity reward Rgn is designed to encourage the
agent to take a larger time step that can effectively reduce
the number of decision-makings and switching of the
control input, which conducive to reduce the training time
and improve the smoothness of path. Thus, the granularity
reward is formulated as:

r∆t ·
∆t

∆tmax

where ∆tmax is the element with largest value in A∆t.

V. EXPERIMENT

A. Experimental Setup

We construct two types of scenes for real-time path plan-
ning, depicted in Fig. 4. Each scene is 700 × 700 in size
and crowded with circular obstacles generated randomly. In
addition, the boundary of the scene is also regarded as an
obstacle. For each scenario, the origin is placed at one of four
corners of a scene, and the target is placed at the opposite
corner of the same scene. Thus, one scene can be used
to generate 4 scenarios, as demonstrated in Fig. 4. In our

experiment, 50 scenes (i.e., 200 scenarios) and 100 scenes (i.e.
400 scenarios) are utilized for training and testing the agent’s
policy respectively.

Fig. 4. 4 scenarios based on a scene (blue circles, black dot and orange dot
denote obstacles, the origin and the target respectively).

The action-value function q(s, a;w) in DQN is parameter-
ized by the deep neural network, whose structure is demon-
strated in Fig. 5. First, the observation of obstacles stO is fed
to the convolution neural network module (CNN Module) for
preprocessing, and then its output is concatenated with the
target information stT, which is fed to the fully connected
network module (FC Module) and outputs all the action
values corresponding to the decision information st. In st,
the variables representing the distance dt1, d

t
2, ..., d

t
nO
, dtT and

the angle θtT are normalized to [0, 1] and [−1, 1] respectively.

Fig. 5. The network structure for q(s, a;w).

The parameters of UAV’s kinematics and airborne sensors
are listed in Table I, and the designed rewards are listed in
Table II. The action set sizes nω and n∆t are set to 5 and 4
respectively.

The agent is trained by traversing the 200 scenarios for
training 30 times. While the training, the neural network pa-
rameters are performed an update using 64 samples extracted
randomly from the replay memory every executing 5 actions,
in which the Adam optimizer [19] with the learning rate 0.001
is employed, and the parameters of the target network are
replaced by the parameters of the evaluate network every
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executing 5 updates. The size of the replay memory is set to
500. The discount factor γ and the proportion ε of random
exploration in ε-greedy behavior policy are set to 0.9 and
0.1 respectively. Our neural network model implementation is
based on Google’s TensorFlow framework [20]. Using these
libraries, all the models have been trained on a GPU Nvidia
GeForce GTX 970.

TABLE I
THE PARAMETERS OF KINEMATIC CONSTRAINTS AND AIRBORNE SENSORS

Parameter ωmax v0 θmax
O dmax

O nO

Value π
60

rad/s 0.05km/s π
2
rad 11.5km 37

TABLE II
DESIGNED REWARDS

Parameter rT rO rdT rθT rω r∆t
Value 10 -10 0.2 0.2 -0.1 0.1

B. Simulations and Discussions
The main objective of the simulation experiments presented

in this section is to evaluate the performance for the proposed
DRL based adaptive real-time path planner and demonstrate
the contribution of each part of the designed rewards to the
results. In the following, the statistical data are the results of
15 repeated experiments.

RQ1: What is the performance of the proposed method?
To demonstrate the performance of our method, Bi-level

Programming (BLP) [21], as an advanced real-time path
planning algorithm with kinematic constraints, is selected as a
benchmark for comparison of our method. It should be noted
that our method is different from BLP in the way of obtaining
obstacle information. BLP is a map-based method mainly
applied to those scenarios with virtual threats, in which UAV
can obtain the complete information of obstacles including
their position and shape within the detection range, whereas
in our method, only relatively limited obstacle information is
observed by airborne range sensors.

Table III demonstrates the statistical results of BLP and our
method with the measurement of success rate, path length, path
smoothness and average step length. Even if less environmen-
tal information is used, our method has a higher success rate
compared with BLP (96.82% vs 95.00%), and they perform
relative close regarding path length and path smoothness.
Specifically, in all test scenarios, the average length of path
planned by our method is 8.39% longer than that of BLP, and
in terms of smoothness, our method achieves 85.98% of BLP.
In addition, the average step length our method takes is much
smaller than that of BLP. This difference is reasonable and
mainly due to the weaker capability of sensing environment. It
is dangerous to take a big step in relatively limited perception,
and more environmental data needs to be collected to identify
obstacles and channels and understand the shape of obstacles.

The path planning results of two randomly selected test
scenarios are shown in the Fig. 6, which demonstrates that

when UAV enters a dangerous area (within the circle of black
dotted line in the Fig. 6), small steps are taken to increase the
sampling frequency of sensors to collect more environmental
information. However, in relatively simple environments, long
steps are taken to provide a smoother path and help to reduce
the training time of the DQN algorithm. The above behaviors
show that the agent obtained by our method has good adaptive
ability in real-time path planning.

Fig. 6. Two randomly selected test scenarios and their planned paths (the
pink shadow represents the detection area during flight).

RQ2: What is the contribution of each part of the designed
rewards to the results?

The designed rewards consist of basic reward Rbs, greed
reward Rgd, smoothness reward Rsm and granularity reward
Rgn. Since the basic reward is fundamental and indispensable,
we focus on the role of the remaining three parts of the
reward in our proposed approach. Table IV demonstrates the
measurement under different types of rewards.

• The comparison between Rbs + Rgd and Rbs is de-
picted in the Fig. 7, which shows that greed reward can
significantly improve the success rate and shorten the
path length for each scenario under the same number
of training episodes. On averaging over scenario, the
success rate increases from 42.30% to 94.83% and the
path length decrease from 139.45 to 96.62 after adding
greed reward Rgd. Due to the significant effect of this
kind of reward, Rbs + Rgd is used as a comparison in
subsequent experiments.

• The comparison between Rbs + Rgd + Rsm and Rbs +
Rgd is depicted in the Fig. 8, and shows that the success
rate and the path length are almost the same, while the
smoothness of path is improved in most scenarios.

• The comparison between Rbs+Rgd+Rgn and Rbs+Rgd

is depicted in the Fig. 9. Similar to Rsm, Rgd improves
the average step length while almost unchanging the
success rate and the path length. But the difference is
that granularity reward has an additional contribution to
the smoothness of path.

• The comparison between Rbs + Rgd + Rsm + Rgn and
Rbs+Rgd is shown in the Fig. 10. By combining Rsm and
Rgn, both path length and path smoothness are improved.
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TABLE III
COMPARISON BETWEEN BLP AND OUR METHOD

Measurement Success rate Path length (km) Path smoothness Average step length (km)
BLP 95.00% 87.41 0.983 14.317

Our method 96.82% 94.74 0.845 2.724

TABLE IV
MEASUREMENT UNDER DIFFERENT TYPES OF REWARDS

Reward Type Rbs Rbs +Rgd Rbs +Rgd +Rsm Rbs +Rgd +Rgn Rbs +Rgd +Rsm +Rgn

Success rate 42.30% 94.83% 95.63% 96.52% 96.82%
Path length 139.45 96.62 96.50 96.16 94.99

Path smoothness 83.57% 81.62% 82.90% 85.67% 84.45%
Average step length 2.06 2.37 2.54 2.73 2.72

Fig. 7. Rbs +Rgd vs Rbs.

Fig. 8. Rbs +Rgd +Rsm vs Rbs +Rgd.
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Fig. 9. Rbs +Rgd +Rgn vs Rbs +Rgd.

Fig. 10. Rbs +Rgd +Rsm +Rgn vs Rbs +Rgd.

VI. CONCLUSIONS AND FUTURE WORK

In this work, an adaptive real-time path planning method
based on DRL is proposed. Taking the observation of obstacles
around UAV and the positional relationship between target and
UAV as the decision information, and designing the action
with the consideration of the kinematic constraints of fixed-
wing UAV, the proposed method can plan a feasible path for
fixed-wing UAV in real-time from the origin to the target. Fur-
thermore, combining with greedy reward, granularity reward
and smoothness reward in the reward design, the designed
action with adaptive ability to deal with the environment
under different granularities contributes to accelerating the
algorithm’s convergence speed and enhancing the smoothness
of the planned path. At last, it is worth mentioning that the

actions and rewards designed in our method are not limited to
DQN algorithm and can be applied to other DRL algorithms.

Considering that real-time path planning tasks can not be
regarded as approximately satisfying the Markov property well
when confronted with the scenarios containing U-shaped ob-
stacles, future work aims to add historical decision information
in decision-making to alleviate such problem. In addition,
integrating the proposed method with a global planner will be
considered to take advantage of the benefits of both methods.
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