
Constructing A Creative Service Software with Semantic Web 

 

Pei-Shu Huanga, Faisal Fahmib,c, Feng-Jian Wanga, and Hongji Yangd 

aDept. of Computer Science, 

National Yang-Ming Chiao-Tung 

University,  

Hsinchu City, Taiwan 

{pshuang, fjwang}@cs.nctu.edu.tw  

bEECS Int’l Graduate Program, 

National Yang-Ming Chiao-Tung 

University, 

Hsinchu City, Taiwan 

faisalfahmiy@gmail.com 

cInformation and Library 

Science, 

Airlangga University,  

Surabaya City, Indonesia 

faisalfahmiy@gmail.com 

dDepartment of Informatics,  

University of Leicester,  

Leicester, England 

hongji.yang@leicester.ac.uk 

 

 
Abstract—In software development, Service Oriented 

Architecture (SOA) and creative computing can be adopted to 

utilize multiple-domain knowledges to construct service 

software possessing creative properties, i.e., novel, useful, and 

surprising. In the past, several theoretical evaluation metrics 

have been proposed to measure creativity of a software system. 

However, a systematic practical method to construct creative 

service software is rarely considered in current researches. In 

this paper, we propose a model for creative service software 

development based on semantic web, which is applied in two 

phases: domain-creative requirement specification and 

semantic-based service design. The model can reduce 

communication work between domain experts and software 

engineers, improve traceability of the specifications, and 

improve machine readability during the generation of creativity. 

After the model of service design is validated for completeness 

and consistency, the creative service software is well-designed 

and can be implemented and reused effectively without losing of 

creativity. 

Keywords: creative computing; semantic web; service-oriented 

architecture; software engineering 

I.  INTRODUCTION 

The software applying creative computing to generate a 
novel, astonish, and useful specification or computation can 
be defined as a creative software [1]. Theoretically, the scope 
of creativity in creative computing has been claimed to be 
more powerful than that of current Artificial Intelligence (AI) 
techniques [2-4], where an AI-based software is commonly 
applied on a specific domain only, and a creative computing 
is applied to create a new domain which is the combination of 
two different domains, or the transformation or exploration of 
existing domains. There are many theoretical results for 
creative computing [5-7]. However, it is still lack of a 
systematic construction method based on current software 
techniques such as object-oriented languages and Service-
Oriented Architecture (SOA). 

Recently, SOA is one of the most acceptable software 
development techniques, due to the enormous open services 
or microservices and better integration capability [8, 9]. On 
the other hand, semantic web is one of the best knowledge 
representations for machine reading and (thus) supports 
automatic data processing. However, a current semantic web 
may contain many knowledges that cannot be utilized directly 
for software development. 

In this paper, we developed a model, with specific 
ontologies and frameworks based on specialized semantic 

web, to help constructing a creative software with SOA during 
requirement specification and design phases. There are a 
series of software development methods adopted from [8, 10] 
and organized to work in requirement specification and design 
phases. Each phase contains part of activities from these 
methods and their expected results are demonstrated using a 
real-world creative application adopted from [7]. Besides, the 
result of each phase is validated for consistency and 
completeness by the respected development participants. 

However, our work does not concern software 
implementation, testing, and maintenance parts still. Our next 
work is to introduce the detailed implementation with SOA, 
in order to find the development pattern and characteristics of 
service software developed based on our model. There are 
several issues can be discussed further. For example, a static 
anomaly detection method [11] can be applied on the 
specification to help remove the redundancy. 

The rest of this paper is organized as follows: In Section 2, 
the background introduces creative computing, semantic web, 
and SOA. In Section 3, we introduce the models based on 
semantic web. In Section 4, we present the series of work that 
need to be done and their expected results in the requirement 
specification and design phases respectively. Finally, Section 
5 gives a conclusion and future work. 

II. BACKGROUND 

A. Creative Computing 

Creative computing can be defined as the properties of 
software, where its computing has all factors of creativity: 
fresh, surprising, and useful [1]. Creative computing attempts 
to consolidate the objectivity of computer system with the 
subjectivity of human creativity resulting a creative algorithm 
that solve practical problems. The software construction for 
creative computing has been discussed more widely in recent 
years, targeted to produce innovative software [12]. 

It is observed that new knowledge created through creative 
ways can be used to innovate new products or services in 
various domains. For some products or services in a domain, 
an innovative product or service tends to be more successful 
in the competitive market than the others [7]. Besides, there 
are three creative ways to build new knowledge: exploratory, 
combinational, and transformational [2]. For the exploratory 
way, new knowledge can be found by researching an existing 
conceptual space. For the transformational way, new 
knowledge can be created by transforming an existing 
conceptual space into another. For the combinational way, 

499

2021 8th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/21/$31.00 ©2021 IEEE
DOI 10.1109/DSA52907.2021.00074



new knowledge can be created by combining similar ideas, 
thoughts, or knowledge. However, the current approaches of 
creative computing [6, 7] are only applied on regular 
application development which is not concerned with the 
reuse of existing services or microservices to improve the 
software development and its performance. 

B. Semantic Web 

The web, i.e., World Wide Web (WWW), is an 
information system where documents and other web resources 
are identified by Uniform Resource Locators (URLs, such as 
https://example.com/resource) and accessible over the 
Internet [13]. The Semantic Web [14-16] is proposed to 
extend and improve the representation of data relation in 
conventional web which consists of a bunch of Web of 
Documents linked by various approaches, e.g., hyperlinks. 
The Semantic Web provides a common framework allowing 
data and the link(s) between data to be shared and reused 
across application, enterprise, and community boundaries 
through a web. By applying Semantic Web, the Internet data 
becomes machine-readable, and thus they can support better 
discovery, data integration, navigation, and automation of 
tasks.  

The structure of Semantic Web contains seven layers, 
which are identifier and character set layer, syntax layer, data 
interchange layer, ontology and rule layer, logic layer, proof 
layer, and trust layer from bottom to top. This structure allows 
a Semantic Web to represent various knowledges using 
existing ontologies, e.g., there are more than 700 ontologies 
with more than 1,300 vocabularies defined in Schema.org. 
There are two core standards to construct a document of 
Semantic Web: Resource Description Framework (RDF) in 
data interchange layer and ontologies representation language, 
e.g., Web Ontology Language (OWL) and Resource 

Description Framework Schema (RDFS) in ontology, query, 
and rule layer. 

Using Semantic Web, the knowledge is represented as 
RDF triples (subject, predicate, object) based on vocabularies 
in specified ontologies, where a subject represents a resource, 
an object represents an attribute of the resource, and a 
predicate represents the relationship between the resource and 
its attribute. Fig. 1 shows an example of knowledge modified 
from [7] and represented in Semantic Web using Protégé. 
However, such a knowledge representation is too complex to 
be applied on the software development directly because it 
contains too many vocabularies unrelated to the development. 
In this paper, we present a simple model which can be used to 
help the development of creative service-based software and 
utilize any knowledges represented with Semantic Web. 

C. Service-Oriented Architecture 

Service-Oriented Architecture (SOA) promotes the reuse 
or creation of services which are applied intra- and inter-
enterprise to improve enterprise agility, i.e., ability to respond 
to a change (industry change). The changes can include: to re-
compose existing services or functions to meet the change of 
customer requirements, to develop new services or functions 
rapidly, to scale the existing systems to meet different levels 
of demand, etc.  

Services designed with SOA commonly have the 
following characteristics: interoperable, loosely coupled, 
reusable, composable, and autonomy [8]. Although SOA 
technology provides several benefits in service design, the 
implementation and maintenance are complex for small scale 
organizations. Microservice technologies are further 
introduced to improve the performance and maintainability of 
an application, where a microservice has additional 
characteristics: bounded by context, smaller in size, and 

 
Fig. 1: An example of knowledge represented in Semantic Web using Protégé 

500



operationally independent. To construct a service-based 
application, two main steps are to identify the 
services/microservices and integrate them to collaborate.  

However, the models of service structure used in current 
software development methodologies with SOA [8, 9, 17, 18] 
commonly separate the service description and service 
composition (or integration) which enable an automatic 
engine for service discovery to be developed but introduce 
complexity. Besides, it also becomes more complex to review 
the consistency and completeness if both descriptions are 
separated. 

III. DATA MODEL BASED ON SEMANTIC WEB TO 

DEVELOP CREATIVE SERVICE SOFTWARE 

In this paper, we develop a model for the development of 
creative service software, where the model contains several 
sub-models of two types: data-modelled and data-resources. 
The model, called Development Model of Creative Service 
Software (DMCS) and shown in Fig. 2, is divided into two 
parts used in requirement specification and service design 
phases separately. The detailed contents for each part and their 
usage are described in Subsections 3.1 and 3.2, respectively. 

A. Semantic-based Requirement Specifications 

An IRS is constructed by software engineers and domain 
experts firstly and transformed into RSM. C-RSM can be 
constructed automatically or semi-automatically by adopting 

the machine of creative computing algorithms to recursively 
merge the similar concepts in RSM and those in KCR. 

1) Initial Requirement Specification (IRS) 
An IRS can be constructed in natural language or common 

graph representation such as Use Case. Conventionally, 
requirement specifications contain a series of features to be 
provided by the software. Each system feature can be 
decomposed into functional requirements and non-functional 
requirements. The functional requirements contain the 
interactions between the system and the user(s) or external 
system(s) describing a behavior between each pair of input 
and output on the system. The non-functional requirement 
specifications include the aspects concerned by the users, but 
not related to functionality directly, e.g., the constraints on the 
performance of the system and its quality factors. 

2) Requirement Specification Model (RSM) 
Recent studies [3-6] show that a semantic web can be used 

to simplify the knowledge acquiring process inside creative 
computing algorithms when adding creativity into the system. 
In this paper, we propose a model containing directed graph 
and RDF/XML structure based on specialized semantic web 
with specific ontology and RDF, called RSM, where the 
ontology adopted from [19] covers all vocabularies used 
commonly in scenario-based modeling [10] and the RDF 
describes the properties of better requirement specifications 
based on that modeling. 

The directed graph and RDF/XML structure of RSM can 
be transformed to each other since they are constructed based 
on the same ontology and RDF. The directed graph of RSM, 
shown in Fig. 3, can reduce the communication work between 
domain experts and software engineers and the RDF/XML 
structure of RSM can help the machine of creative computing 
to read and understand the requirement. Fig. 4 shows an 
example RDF/XML structure of RSM describing parts of 
directed graph in Fig. 3. 

3) Knowledge and Creativity Resources (KCR) 
KCR contains various existing ontology-based 

knowledges represented in semantic web for the information 
resources of the computation in creative computing. Each of 
them can contain several concepts, property of that concept 
(i.e., attributes or instances), and the relationships between the 
concepts and their properties. KCR can be constructed based 

Knowledges or 
Creativity 

Resources (KCR)

T
ra

n
sf

o
rm

Id
e

n
ti

fy

Service or 
Microservice 

Directory (SMD)

Construct and 
Validate Creativities Construct

Modify for 
completeness 

and consistency

Modify for 
completeness 

and consistency

Requirement Specification Phase Service Design Phase

Notations: Data-Model led Data-Resources

 
Fig. 2: Structure of DMCS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:ars="ApplicationRequirementSpecifications.owl"> 
<ars:SystemUser rdf:about="User 1"> 
    <ars:SystemFeature>Feature 1</ars:SystemFeature> 
    <ars:SystemFeature>Feature 2</ars:SystemFeature> 
    … (continue for SystemFeature) 
    <ars:SystemFeature>Feature i</ars:SystemFeature> 
</ars:SystemUser> 
<ars:SystemUser rdf:about="User 2"> 
     … (SystemFeature accessed by User 2) 
</ars:SystemUser> 
… (continue for SystemUser) 
<ars:SystemUser rdf:about="User h"> 
    … (SystemFeature accessed by User h) 
</ars:SystemUser> 
</rdf:RDF> 

Fig. 4: RDF/XML of RSM describing part of requirement 

specifications represented in Fig. 2 

User 1

System 
Feature 1

System 
Feature 2

System 
Feature  i

...

Functional 
Requirement

Non-functional 
Requirement

Function 1

Function 2

Function j

...

...

Entity 1

Entity 2

Entity l

...
...

Software
Application

User 2

User h

...

...

Quality 1

Quality 2

Quality k

...
...

 
Fig. 3: The directed graph of RSM 

501



on personal knowledge or public information. An example of 
KCR is shown in Fig. 1. 

4) Creative Requirement Specification Model (C-RSM) 
C-RSM is an RSM model with additional creativity 

generated by a machine of creative computing automatically 
or semi-automatically. The machine of creative computing 
can be constructed based on inference engines or Machine 
Learning algorithms applying explorational, transformational, 
and/or combinational creativities employed from [2], where 
the algorithms are Self-Organizing Map (SOM), Principle 
Component Analysis (PCA), and association rules learning 
(Apriori), respectively. 

B. Semantic-based Service Structures 

Capability Candidates are identified from the C-RSM 
constructed in the first phase. SSM is constructed by 
recursively processing the Capability Candidates and SMD. 

1) Capability Candidates 
A service can be defined as an independent software 

program that makes its functionalities available to be accessed 
through a message mechanism. These functionalities are also 
called as service capabilities [8], where capability candidates 
can be derived from system features and functional 
requirements in C-RSM. 

2) Service or Microservice Directory (SMD) 
To speed up the development, a service capability can be 

constructed as a composition of other capabilities from the 
existing services. SMD contains the description of service and 
its associated contract containing the access method and 
quality assurance. SMD also can be used to identify capability 
candidates which can be replaced with those provided by 
existing services. 

3) Service Structures Model (SSM) 
Jolie [20] is claimed as a service-oriented programming 

language which combines service description and its 
implementation to simplify the development. However, a 
service modeled in Jolie can increase the complexities since 
the service also contains its implementation details. In this 
paper, we proposed a model, similar to Jolie but without 
implementation details, containing directed graph and 
RDF/XML structure based on specialized semantic web, 
called SSM, to model a layered service structure, where each 
service contains its capabilities and the service composition 

and quality requirement associated with these capabilities (if 
any). The ontology for SSM is called Service Structure and 
adopted from [21], where the ontology contains all 
vocabularies of common service structures and 
communication mechanism between services derived from 
[18], e.g. communication protocols and methods, endpoint 
address, etc. The RDF of SSM is used to describe the 
properties of a layered services model, e.g., layer of service 
and service composition. 

The model is constructed based on the services in Domain-
aware Layered Service Model (DLSM) [22] which separates 
the services of an application into three layers to reduce the 
management complexities of reusability. The layers of 
services in DLSM include Task, Domain-Specific, and 
Domain-General Service Layers from top to bottom, where a 
service can be composed of services in bottom layer(s) and/or 
external services (if any). Task Service Layer contains 
services with non-reusable context that corresponds to single-
purpose business process logic. A task service usually 
encapsulates service compositions that invoke other services 
to complete its capabilities. Domain-Specific Service Layer 
contains reusable services applied in a specific domain only. 
Domain-General Service Layer contains reusable services that 
can be requested from different domains. It usually 
encapsulates low-level technology-centric functions, such as 
notification, logging, and security processing.  

Fig. 5 shows a directed graph of SSM to be easily 
understood by the software engineers. Similar to RSM, the 
directed graph and RDF/XML structure of SSM can be 
transformed to each other since they constructed based on the 
same ontology and RDF. To simplify the directed graph of 
SSM, the input and output messages for a service capability 
are omitted and only show the name of the capability. An 
example RDF/XML describing parts of service structure in 
Fig. 5 is shown in Fig. 6. 

IV. A METHOD TO CONSTRUCT CREATIVE SERVICE 

SOFTWARE 

In this section, we present a method to construct creative 
requirement and service design specifications for service 
software using DMCS. The method contains two phases: 

 

 

Fig. 6: An example RDF/XML describing service structure 

in Fig. 5 

Software
Application

...

Domain-Specific
 Service 1

Domain-Specific
 Service 2

Tas Service 1

Capability 1
Capability 2
..
Capability n

Quality 1
Quality 2
..
Quality m

Domain-Specific
 Service q

...

Domain-General
 Service 1

Domain-General
 Service 1

Domain-General
 Service 1

...

... ...

Task Service 2

Task Service p
 

Fig. 5: A directed graph structure of SSM 

502



 (1) domain-creative requirement specification and (2) 
semantic-based service design. In each phase, there is a 
distinct method designed to derive the specification, which is 
checked the consistency and completeness then. If any of 
inconsistency or incompleteness for the specifications exists, 
the work will move to the corresponding step for modification 
and improvement. 

 

A. Domain-Creative Requirement Specification 

The work in the first phase include two parts: (1) identify 
primary requirement specifications (non-creative) and (2) an 
iterative work to construct creative requirement specifications, 
with semantic web. The specification constructed in this phase 
contains users, system features, functional requirements and 
entity(ies) accessed or manipulated, and non-functional 
requirements. Fig. 7 shows activities of this phase, where 
Steps 1 and 2 (rectangle) contain the activities in Part (1) and 
iterations of Steps 3~7 (rounded rectangle) describe the 
activities in Part (2). 

Step 1: Construct Initial Requirement Specification. 
Input: - 
Output: directed graph of RSM 

Activities: The requirement specifications are constructed 
by software engineers based on the viewpoints of users or 
domain experts. To construct better requirement specification, 
software engineers need to discuss with users or domain 
experts to understand the application domain and analyze 
documentations of the corresponding legacy system (if any). 

Step 2: Transform Requirement Specifications to 
Semantic Web Model.  

Input: directed graph of RSM 
Output: RDF/XML of RSM 
Activities: To enable a machine of creative computing 

understand the requirement specification quickly and 
effectively, the directed graph inputted is transformed to 
RDF/XML of RSM. An algorithm from [21] is employed for 
the transformation. 

Step 3: Identify or Modify Creativity Candidates.  
Input: RDF/XML of RSM and KCR 
Output: Creativity Candidates 

Activities: KCR may contain some knowledges that are 
not appropriate when used as creativity resources, according 
to the context and constraint of the application domain. The 
set of creativity candidates is a subset of KCR that can be used 
to add creativity to RSM. In this step, Creativity Candidates 
are discovered from the knowledges represented in KCR 
based on syntactic and semantic similarities [5] between the 
concepts in KCR and those derived from system features and 
functional requirements in the RSM inputted, where syntactic 
similarity computes the distance between two input strings 
and semantic similarity computes the similarity of the 
meaning between two input strings. 

Step 4: Construct or Modify Candidates of Creative 
Requirement Specifications. 

Input: RDF/XML of RSM and Creativity Candidates 
Output: C-RSM candidates 
Activities: This step works to construct C-RSM 

candidates by iteratively merging the functional requirements 
inside the input of RSM with the selected properties of 
concepts inside the input of Creativity Candidates, where the 
merging options are discovered by the machine of creative 
computing applying explorational, transformational, and/or 
combinational creativities. For each iteration, the C-RSM 
candidate is modified based on different merging options. 

Step 5: Examine Creativity. 
Input: C-RSM candidates 
Output: C-RSM 
Activities: To examine the creativity of C-RSM candidate 

inputted, the creativity scores are measured based on the 
creativity factors: novel, surprising, and useful [5]. The C-
RSM candidate with the highest creativity score and above the 
user defined threshold is selected to be the C-RSM. 

Step 6: Validate Creative Requirement Specifications. 
Input: C-RSM 
Output: Validated C-RSM 
Activities: In this step, domain experts and software 

engineers check the completeness and consistency of the input 
of C-RSM. If any error is found, go back to Step 4, perform 
necessary updates, and continue. 

Step 7: Update Resources (if necessary). 
Input: - 

STEP 1
Construct Initial 

Requirement 

Specifications

STEP 2
Transform Requirement 

Specifications to 

Semantic Web Model

STEP 5
Examine 
Creativity

Is Valid?

STEP 4
Construct/modify 

Creative Requirement 
Specifications

STEP 6
Validate Creative 

Requirement 
Specification

Validated
C-SRM

Directed 
graph 

of RSM

Knowledge or 
Creativity 
Resources

Creative 
RSM (C-RSM)
Candidates

RDF/XML 
of RSM

Updates

STEP 3
Identify/Modify 

Potential 
Creativity

Creativity Candidates

RDF/XML 
of RSM

C-RSM

STEP 7
Update 

Resources

Creativity candidates 
available?

Creative?

NoNo

No

 
Fig. 7: Activities of domain-creative requirement specifications 

503



Output: - 
Activities: If all C-RSM candidates cannot pass the 

examination of creativity in Step 5, KCR needs to be updated 
with new knowledge extracted from textual documents [2], 
service descriptions [23], or web documents [24]. 

B. Semantic-Based Service Design 

The work in the second phase is done by software 
engineers and includes two main part: the filtering out system 
features and functional requirements that will not be 
implemented as services and an iterative service design. The 
specification derived in this phase contains services definition 
and composition in SSM model, where each service definition 
contains its service capabilities and quality requirements. At 
the end of the phase, the specification is validated for 
consistency and completeness. The activities of this phase are 
shown in Fig. 8, where Step 1 (rectangle) is an activity of the 
first part and iterations of Steps 2~5 (rounded rectangle) 
contains the activities of the second Part. 

Step 1: Filter Out Meaningless Service Encapsulation. 
Input: validated C-RSM 
Output: Initial Capability Candidates and System 

Functions 
Activities: The system features and functional 

requirements in the input of validated C-RSM are divided into 
two categories: 1) Those that will be implemented as services 
are categorized into Initial Capability Candidates and 2) the 
rest are named as System Functions. Such a categorization is 
calculated based on its benefits and drawbacks toward the 
goals of the desired software [25]. For example, if the goal 
includes performance, the functional requirement whose 
implementation needs low latency real-time communication, 
it is meaningless to be encapsulated within a service. 

Step 2: Identify or Modify Capability Candidates. 
Input: Initial Capability Candidates and Updates 

(generated in Step 5 of this phase) 
Output: Capability Candidates 
Activities: The Initial Capability Candidates are defined 

as Capability Candidates directly. The modification of 
Capability Candidates is based on the Updates containing the 

System Functions to be accessed for service composition and 
the capability candidates used to fix the error of completeness, 
if required. System Functions existing in the Updates indicate 
to adopt one or more capability candidates to handle the 
communication to these System Functions. 

Step 3: Define or Modify Service Candidates.  
Input: Capability Candidates  
Output: Service Candidates 
Activities: In this step, the elements in the input of 

Capability Candidates are grouped based on one or more 
logical contexts defined in service layers of DLSM, where 
each group represents a service candidate. For example, the 
layer of task services requires that a service has a context 
specific to a business process of an enterprise or organization. 
The Service Candidates are modified for each iteration if the 
input is updated. The capability of services replaced with 
those provided by the existing services stored in SMD are also 
identified in this step to increase the reusability. 

Step 4: Construct or Modify Services Composition. 
Input: Service Candidates, Validated C-RSM, System 

Function, and Updates 
Output: SSM 
Activities: In this step, the relationships among system 

features and functional requirements inside the input of 
Validated C-RSM are used to identify the interactions among 
the capabilities inside the input of Service Candidates, 
including those provided by existing services (if any), and 
System Functions. All interactions discovered are then 
generalized to construct Service Composition. The Updates 
from Step 5 are used to modify Service Composition, where 
the Updates contain the redundant or conflicted Capability 
Candidates (i.e., consistency error) to be fixed. Similar to 
Service Candidates, the Service Composition is modified for 
each iteration if the input is updated. Finally, the Service 
Composition constructed is used to derive SSM.  

Step 5: Validate Service Composition.  
Input: SSM 
Output: Validated SSM 

Activities: In this step, software engineers validate the 
completeness and consistency of the services definition and 

STEP 1
Filter Out 

Meaningless Service 

Encapsulation

System
Functions

STEP 2
Identify/Modify 

Capability 
Candidates

STEP 3
Define/Modify 

Service 
Candidates

STEP 4
Construct/

Modify Services 
Composition

Service or 
Microservice 

Directory

STEP 5
Validate  
Services 

Composition

Validated
SSM

Validated
C-RSM

Is
consistent?

Capability
Candidates

Service 
Candidates

Initial Capability
Candidates

Service
Structure

Model (SSM)

Updates

Is
complete?

No

No

 
Fig. 8: Activities of semantic-based service design 

504



composition in DLSM from the input of SSM. If any error is 
found, go back to the corresponding Step, perform necessary 
updates, and continue. For example, in the service 
composition, if a capability of task or domain-specific service 
has a conflict with one or more capabilities of domain-general 
services, the former capability is removed to increase 
reusability. After validation succeeds, the validated SSM is 
stored into SMD to help the development of creative service 
software and increase reusability in the future without losing 
the creativity generated in the first phase. 

V. PRACTICAL EXAMPLE APLLYING THE METHOD 

A real-world creative application, called Humor Degree 
(HD) Calculation System [26], is adopted to demonstrate the 
feasibility of the presented method. Due to the space limitation, 
all requirement specifications in the example are implemented 
as services and there is no problem of consistency and 
completeness s found during construction process. HD 
Calculation System is an application to measure the level of 
humor associated with an input of verbal joke containing no 
more than two utterances. The users of the system are 
computer scientists which attempt to provide a quantitative 
description of humor during the humor recognition using 

computer techniques. The users also expect the HD 
calculation in the system can be reliable and adaptable for 
humor exploration. 

In the first phase, the domain experts and software 
engineers work on Step 1 to construct a directed graph of SRM 
for the requirement specifications. Here, a lexical analysis is 
selected to calculate the HD of utterances derived from the 
input, where the utterances consist of words. Two general 
features of humor, i.e., novelty and amusement, are selected 
as the computation elements, where each of them can be 
assigned proper values according to their contribution to the 
humor. To perform lexical analysis, the approach adopts a 
way which allows the users to store words with associated 
novelty and amusement values in order to calculate HD of the 
words derived from the inputs of humor. The result of a 
directed graph of SRM is shown in Fig. 9. 

Computer 
Scientist

Lexical Analysis 
of Utterances

Input Humor

Calculate 
Humor

Functional 
Requirements

Input Word

Calculate 
Novelty

Calculate 
Amusement...

...

Word

...

Show 
Calculation

...

Access 
Database

HD 
Calculation 

System

Non-functional 
Requirements

Reliability

Adaptability

...

...

 
Fig. 9: An example directed graph of RSM for HD 

Calculation System 

 

 
Fig. 11: A web interface of CG for input 

 

 
Fig. 12: The candidates of C-RSM generated by CG 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
    xmlns:schema="http://schema.org/" 
    xmlns:rsm="ApplicationRequirementSpecifications.owl"> 
<schema:SoftwareApplication rdf:about="HD Calculation System"> 
    <rdfs:label>An application to describe how humorous an item is</rdfs:label> 
    <rsm:UserList> 
        <rsm:SystemUser rdf:about="Computer Scientist"> 
            <rsm:SystemFeature>Lexical Analysis of utterances</rsm:SystemFeature> 
            <rsm:SystemFeature>Input humor</rsm:SystemFeature> 
            <rsm:SystemFeature>Calculate Humor</rsm:SystemFeature> 
            <rsm:SystemFeature>Show Calculation</rsm:SystemFeature> 
        </rsm:SystemUser> 
    </rsm:UserList> 
    <schema:featureList> 
        <rsm:SystemFeature rdf:about="Lexical Analysis of utterances"> 
            <rdfs:label>A feature to measure a value related to a word</rdfs:label> 
            <rsm:FunctionalRequirementList> 
                <rsm:SystemFunction rdf:about="Input word"> 
                    <rsm:SystemEntity type="input">Word</rsm:SystemEntity> 
                    ... (continue for SystemEntity) 
                </rsm:SystemFunction> 
                <rsm:SystemFunction rdf:about="Calculate Novelty"> 
                    ... (detail of SystemFunction) 
                </rsm:SystemFunction> 
                <rsm:SystemFunction rdf:about="Calculate Amusement"> 
                    ... (detail of SystemFunction) 
                </rsm:SystemFunction> 
                ... (continue for SystemFunction) 
    </schema:featureList> 
</schema:SoftwareApplication> 
</rdf:RDF> 

Fig. 10: An example RDF/XML of RSM for HD 

Calculation System 

505



In Step 2, the directed graph is transformed into 
RDF/XML of RSM, shown in Fig. 10. We developed a web 
interface applying algorithm in [19] to work for Steps 3 and 4, 
called Creativity Generator (CG), where Step 3 discovers the 
Creativity Candidates from KCR shown in Fig. 1 and Step 4 
merges the Creativity Candidates discovered with the 
RDF/XML of RSM. Fig 11 shows the interface to input the 
RDF/XML of RSM and KCR, and preferred creativity 
technique selection in CG. Fig. 12 shows the candidates of C-
RSM generated from the execution of Steps 3 and 4 in CG 
sequentially. Lines 24~29 of a C-RSM candidate in Fig. 13 
show the result of merging between the functional 
requirements for Lexical Analysis of Utterances containing 
Calculate Novelty and Calculate Amusement, shown in Lines 
24~29 of Fig. 10, and properties of Utterances Analysis 
concept containing Ambiguity, Slang, Colloquialism, 
Commonance, Popularity, and Scope, discovered from KCR 
in Fig. 1. The generated C-RSM candidates are then examined 
for creativity in Step 5 and validated for consistency and 
completeness in Step 6. 

 In the second phase, the software engineers extract the 
requirement specifications from the validated C-SRM to 
identify Initial Capability Candidates in Steps 1, which are 
defined as Capability Candidate in Step 2 and shown in Fig. 
14. In Step 3, these Capability Candidates are grouped based 
on the contexts defined in the layer of services in DLSM. For 
example, the Capability Candidates of Calculate 
Commonance, Calculate Ambiguity, Calculate Popularity, …, 
and so on, are grouped as Utterances Analysis service 
candidate in domain-specific layer since the capabilities are 
reusable for a specific domain only. Step 4 identifies the 
Service Composition for Service Candidates, resulted in Step 
3, to construct the SSM model. Fig. 15 shows an example of 
service definition, containing a set of capabilities and quality 
requirements (if any), and service composition, where the blue 
color indicates the reusable existing service adopted. Fig. 16 

shows an example of SSM model based on Fig. 15. After the 
SSM is validated in Step 5, the creative service software is 
well-constructed and can be implemented effectively without 
losing the creativities generated in Phase 1.  

 The development activities inside the example above 
show the feasibility of our presented method and its associated 
specification models to construct a creative service software. 
The model constructed during the first phase can be used to 
generate necessary creativity successfully. In the second 
phase, the model of services in SSM can organize the services 
with no reusability, reusability in a specific domain, and 
reusability in multi domain, into different layers of service. 
Besides, the validated SSM can also be stored into SMD to 
help the development of creative service software in the future. 
For example, if SMD contains necessary SSM models, a 
machine of service discovery can automatically and 
effectively discover the available existing services to be 
reused from an input of C-SRM. 

VI. DISCUSSION AND CONCLUDING REMARKS 

In this paper, we presented a novel specification model 
based on semantic web that are applied on a systematic 
method to construct creative software with SOA. The method 

… 
24 
25 
26 
27 
28 
29 
… 

… 
      <rsm:SystemFunction rdf:about="Calculate Ambiguity"> 
           ... (detail of SystemFunction) 
       </rsm:SystemFunction> 
       <rsm:SystemFunction rdf:about="Calculate Popularity"> 
             ... (detail of SystemFunction) 
      </rsm:SystemFunction> 
…                 

Fig. 13: Part of C-RSM for HD Calculation System 

• Store word measurement 

• Input Humor 

• Calculate Humor 

• Show Calculation 

• Input Word 

• Calculate Commonance 

• Calculate Ambiguity 

• Calculate Popularity 

• Access Database 

• Word Value Assignment 

• Allocate Weights 

• Word extractions 
… 

… 

Fig. 14: Example capability candidates of HD 

Calculation System 

 

Store Word 
Measurement

Input Word

   Calculate 
Humor

Input Humor

Reliability
Adaptability

Utterances 
Analysis

Word Extraction
Word Value Assessment
Calculate Commonance
Calculate Ambiguity
Calculate Popularity
...
Allocate Weight

Google
Cloud SQL

Create Database
Select Database
Input Data
Update Data
Delete Data

 Display Input 
Output

Create Form
Display Form
Display String
Display Graph

HD Calculation 
System

Task Service 
Layer

Domain-Specific 
Service Layer

Domain-General 
Service Layer

 
Fig. 15: An example service composition of HD 

Calculation System 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

 
13 
14 
15 
16 
17 
18 
19 

 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
    xmlns:xs="http://www.w3.org/2001/XMLSchema" 
    xmlns:swss="ServiceStructure.owl"> 
<swss:DomainSpecificService rdf:about="Utterances Analysis"> 
    <rdfs:label>An analysis of a group of words</rdfs:label> 
    <swss:ServiceCapabilityList> 
        <swss:ServiceCapability rdf:about="Word Extraction"> 
            <rdfs:label>Exstract each word from an input</rdfs:label> 
            <swss:MessageMechanism>REST</swss:MessageMechanism> 
            <swss:ServiceEndPoint>http://example.com/utterance/extract 
</swss:ServiceEndPoint> 
            <swss:MessageInput> 
                <xs:element name="Humor" type="xs:String"/> 
                ... (continue for xs:element) 
            </swss:MessageInput> 
            <swss:ServiceComposition> 
                <swss:GenericService rdf:about="Display Input/Output"> 
                    <rdfs:label>A service to make and display input/output user 
interface</rdfs:label> 
                    ... (continue for ServiceCapability) 
                </swss:GenericService> 
            </swss:ServiceComposition> 
            <swss:MessageOutput> 
                <xs:element name="Status" type="xs:String"/> 
                ... (continue for xs:element) 
            </swss:MessageOutput> 
        </swss:ServiceCapability> 
        <swss:ServiceCapability rdf:about="Word Value Assessment"> 
            ... (details of ServiceCapability) 
        </swss:ServiceCapability> 
        … (continue for ServiceCapability) 
    </swss:ServiceCapabilityList> 
</swss:DomainSpecificService> 
</rdf:RDF> 

Fig. 16: An example SSM of HD Calculation System 

506



is composed of two phases, requirement specification and 
service design, where each phase adopts a novel specification 
model containing directed graph and RDF/XML structure, 
and each pair of input and output for each step is defined 
clearly. The service software constructed based on the 
proposed method can contain not only the characteristics of 
services in SOA, but also the creativity properties. We further 
provide a practical example to demonstrate the feasibility of 
this method and its associated specification model. However, 
there are many non-functional aspects not considered inside 
the method. For example, empirical evaluation for the 
reusability of the services constructed, communications speed 
between services in DLSM, and patterns to better utilize the 
creativity resulted. Besides, it neither considers the 
development issues during the implementation, testing, and 
maintenance phases.  

REFERENCES 

[1] L. Zhang and H. Yang, "Definition, research scope and challenges of 
creative computing," in Proceedings of 19th International Conference 
on Automation and Computing, London, UK, pp. 1-6, 2013. 

[2] D. Jing and H. Yang, "Domain-Specific ‘Ideation’: Real Possibility or 
Just Another Utopia?", Applied Science Journal, pp. 68-99, 2015. 

[3] L. Zhang, H. Yang, C. Zhang and N. Li, "A New Way of Being Smart? 
Creative Computing and Its Applications in Tourism," in Proceedings 
of 2018 IEEE 42nd Annual Computer Software and Applications 
Conference (COMPSAC), Tokyo, Japan , pp. 45-50, 2018. 

[4] C. Y. Huang, M. C. Yang, and C. Yu. Huang, "An Empirical Study on 
Factors Influencing Consumer Adoption Intention of an AI-Powered 
Chatbot for Health and Weight Management." International Journal of 
Performability Engineering, vol. 17, no. 5. pp. 422-432, 2021. 

[5] L. Zhang, L. Zou, D. Jing and H. Yang, "An Approach to Constructing 
a General Framework for Creative Computing: Incorporating Semantic 
Web," in Proceedings of 2016 IEEE Symposium on Service-Oriented 
System Engineering (SOSE), Oxford, UK, pp. 297-306, 2016. 

[6] D. Jing, H. Yang, L. Xu and F. Ma, "Developing a Creative Idea 
Generation System for Innovative Software Reliability Research," in 
Proceedings of 2015 Second International Conference on Trustworthy 
Systems and Their Applications, Hualien, Taiwan, pp. 71-80, 2015.  

[7] H. Yang, D. Jing and L. Zhang, "Creative Computing: An Approach to 
Knowledge Combination for Creativity?," in Proceedings of 2016 
IEEE Symposium on Service-Oriented System Engineering (SOSE), 
Oxford, UK, pp. 407-414, 2016. 

[8] T. Erl, Service-Oriented Architecture: Analysis and Design for 
Services and Microservices, Prentice Hall, 2016. 

[9] F. J. Wang and F. Fahmi, "Constructing a Service Software with 
Microservices", in Proceedings of 2018 IEEE World Congress on 
Services (SERVICES), San Francisco, CA, USA, pp. 43-44, 2018. 

 

 

 

 

 

 

 

[10] B. Brueggle and A.H. Dutoit, Object-Oriented Software Engineering: 
Using UML Patterns and Java, Prentice Hall, 2004. 

[11] P.S. Huang, F. Fahmi and F.J. Wang, "Improving the Detection of 
Artifact Anomalies in a Workflow Analysis," IEEE Transactions on 
Reliability, doi: 10.1109/TR.2020.3048612, 2021. 

[12] A. Hugill and H. Yang, “The Creative Turn: New Challenges for 
Computing”, International Journal of Creative Computing, vol. 1, no. 
1, pp. 4–19, 2013. 

[13] Wikipedia, “World Wide Web”, https://en.wikipedia.org/wiki/ 
World_Wide_Web  

[14] World Wide Web Consortium (W3C), “Semantic Web”, 
https://www.w3.org/standards/semanticweb/ 

[15] B.-L. Tim. (1994). Plenary at WWW Geneva 94. 
http://www.w3.org/Talks/WWW94Tim/ 

[16] W. Hall and K. O'Hara, "Semantic Web," Encyclopedia of Complexity 
and Systems Science, R. A. Meyers, Ed., ed New York, NY: Springer 
New York, pp. 8084-8104, 2009. 

[17] T. Erl, SOA: Principles of Service Design, Prentice Hall, 2008. 

[18] S. Newman, Building Microservice: Designing Fine-Grained Systems, 
O'Reilly Media, 2015. 

[19] F. Fahmi, P. S. Huang, F. J. Wang, and H. Yang, “Constructing a 
Creative Software with Services,” Under submission review. 

[20] Jolie: The Service-Oriented Programing Language, http://www.jolie-
lang.org/. 

[21] Z. Wu, et al., "Implementing an Inference Engine for RDFS/OWL 
Constructs and User-Defined Rules in Oracle," in Proceedings of 2008 
IEEE 24th International Conference on Data Engineering, Cancun, 
Mexico, pp. 1239-1248, 2008. 

[22] P. S. Huang, F. Fahmi, F. J. Wang, “A Model to Helping the 
Construction of Creative Service-Based Software”, Accepted in 45th 
IEEE Annual Computer Software and Applications Conference 
(COMPSAC), 2021. 

[23] N. Zhang, J. Wang and Y. Ma, "Mining Domain Knowledge on Service 
Goals from Textual Service Descriptions," IEEE Transactions on 
Services Computing, vol. 13, no. 3, pp. 488-502, 2020. 

[24] H. Alani et al., "Automatic ontology-based knowledge extraction from 
Web documents," IEEE Intelligent Systems, vol. 18, no. 1, pp. 14-21, 
2003. 

[25] S. Newman, Monolith to Microservices: Evolutionary Patterns to 
Transform Your Monolith, O'Reilly Media, 2019. 

[26] T. Liu, H. Yang, and F. J. Wang, “A Creative Approach to Humour 
Degree Calculation for Utterances,” in Proceedings of 20th IEEE 
International Conference on Software Quality, Reliability and Security 
Companion (QRS-C), Macau, China, pp. 650-656, 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

507


