

Automatic Test Path Generation and Prioritization using UML Activity Diagram

 Lili Fan Yong Wang* Tao Liu

 Anhui Polytechnic University Anhui Polytechnic University Anhui Polytechnic University

 fanlili@ahpu.edu.cn yongwang@ahpu.edu.cn liutao@ahpu.edu.cn

Abstract—Software testing is an effective method of software

quality assurance. In this paper, we define the activity flow

graph formally, and describe the mapping rules from UML

activity diagram to activity flow graph. By setting test coverage

criteria and combining with the improved Depth-First-Search

algorithm, we obtain the test path set of the activity flow graph.

Then we optimize the set of independent paths to reduce the

redundancy of test cases. After that, we establish a priority

model to sort the test paths, and prioritize the relatively

important paths to achieve the test goal as soon as possible.

The model is implemented on a case study of manual test paper

generation. The experiment shows that the automatic test path

generation algorithm and priority model are effective and

feasible, and can achieve good results in practical applications.

Keywords: UML activity diagram; activity flow graph; test

path; priority model

I. INTRODUCTION

The main goal of software development is to develop
high-quality software with the least cost. Software testing is
an important means to ensure software quality and improve
software reliability [1]. How to generate effective test cases
has attracted more and more researchers' attention [2]-[5].
The automatic generation technology of test cases is the key
to realizing test automation, which can effectively improve
test efficiency and reduce time consumption. Therefore, how
to automatically generate test cases that meet the coverage
criteria has always been one urgent problem in the software
testing field [6].

UML is a graphical modeling language. In recent years,
the automatic generation of test cases using UML models has
become a hot topic in software testing. At present, software
testing technologies based on sequence diagram,
collaboration diagram, state diagram, use case diagram and
other models have achieved more research results in the
generation of test cases [7]-[12]. Activity diagram has the
ability to describe system workflow and parallel activities. It
is the most suitable model for describing software processes,
which makes it become an important basis for system testing
[13]. Jena et al. [14] proposed a method to generate an
activity flow table from activities, and convert it into an
activity flow graph. The method can traverse and generate
test paths by using activity coverage criteria, but it failed to
realize the automatic generation of test cases. Meiliana et al.
[15] presented an improved Depth-First-Search algorithm,
which generates activity graph and sequence graph by
traversing activity diagram and sequence diagram
respectively, and combines them into a system testing graph

to generate the final test case. It achieved good results, but
did not consider cyclic path redundancy and path
optimization in complex test scenarios. Teixeira et al. [16]
introduced a simple test method using UML activity diagram,
which generates test cases by constructing activity
dependency table and activity dependency diagram, to find
software defects as early as possible and reduce development
costs. This method is relatively simple, but lacks the formal
definition of the activity dependency graph, and the
description of the correspondence between the activity
dependency graph and the activity dependency table is not
specific enough. Xu et al. [17] designed an approach to
generating test cases automatically from Systems Modeling
Language activity diagram. This approach can be applied to
system activity diagram with complex structures and can
handle concurrent structures. However, the number of test
cases generated by concurrent structure is very large, which
can easily cause path explosion problems. Therefore, the
algorithm also needs to consider the reduction of test cases.

In this paper, we propose an improved Depth-First-
Search algorithm, which traverses from the initial node to the
end node of the activity flow graph, and get a set of test paths.
The set of test cases generated by the set of paths can meet
the predetermined test coverage criteria. Through the
independent path generation algorithm, the test path set is
filtered to reduce the number of test cases and redundancy.
And the priority model is used to prioritize independent
paths and test key paths first, thereby improving test
efficiency.

II. PRELIMINARIES AND BASIC CONCEPTS

A. UML Activity Diagram

UML activity diagram [18] is an interaction diagram that
models dynamic behaviors. It describes the control flow
from one activity to another, and it is essentially a flow chart.
The activity diagram mainly includes several components:

1) activity nodes and control nodes.

2) objects involved in the activity process or objects that

trigger the activity.

3) transition control flow among activities, which is

divided into sequential structure, branch structure and

concurrent structure.

4) constraint conditions of activity.

5) the start state of activity. There is only one start state

in the same level.

6) the end state of activity. There can be one or more.

7) swimlanes.

484

2021 8th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/21/$31.00 ©2021 IEEE
DOI 10.1109/DSA52907.2021.00072

mailto:fanlili@ahpu.edu.cn
https://www.semanticscholar.org/author/F.-A.-Teixeira/150105699

B. Activity Flow Graph and Conversion Rules

Activity flow graph is a simplified representation of the
activity diagram. It cancels swimlanes, and doesn’t
distinguish the specific participants. Activity flow graph is
essentially a directed graph, which is obtained by mapping
the elements of the activity diagram through certain rules.

Definition 1 Activity flow graph is a four-tuple

0, , ,AFD V E v T=  , where:

1) { }, 1... | |iV v i V= = , which represents the set of

nodes of graph.

2) { }, 1... | |iE e i E= = , which represents the set of

directed edges of graph. A directed edge can be represented

by a pair of ordered nodes, that is, e E  , ,i jv v makes

(,)i je v v= , and the direction flows from
iv to jv .

3)
0v is the initial node.

4) T is the set of final nodes.

To simplify the analysis, the activity constraints of the
activity diagram are not considered, and then the conversion
rules from activity diagram to activity flow graph are as
follows.

1) The activity nodes and control nodes of the activity

diagram are mapped to the nodes of the activity flow graph,

represented by circles, as shown in Figure 1(a).

2) The initial node of the activity diagram is mapped to

the initial node of the activity flow graph, as shown in

Figure 1(b).

3) The control flows of the activity diagram are mapped

to the directed edges of the activity flow graph. The arrows

and directions of the control flows of the activity diagram

remain unchanged in the activity flow graph, as shown in

Figure 1(c).

4) The mapping relationships of the branch structure and

the merge structure between the activity diagram and the

activity flow graph are shown in Figure 1(d) and Figure 1(e).

5) The mapping relationship between the concurrent

structure and the convergent structure in the activity

diagram and the activity flow graph are shown in Figure 1(f)

and Figure 1(g).

6) The final nodes of the activity diagram are mapped to

the final nodes of the activity flow graph, as shown in

Figure 1(h).

The graphic elements corresponding to the specific
mapping relationship are shown in Figure 1.

Figure 1. Graphic element symbols in activity diagram and activity flow

graph

C. Related Concepts

Definition 2 Path fragment and path fragment set. In

the activity flow graph, if node
iv and node jv are directly

connected by a directed edge, the sequence of nodes
between them is called a path fragment. The set of path
fragments is called the path fragment set.

Definition 3 Path and path set. In the activity flow
graph, there is a connected road from the initial node to the
final node, then the set of path segments on this road is
called a path. The set composed of paths is called the path

set, expressed as
1 2{ , ,..., }nP P P P= , n is the number of

paths in the activity flow graph.

Definition 4 Basic path and circular path. In a path of

the activity flow graph, ,i jv v V  , if
i jv v , the path

from
iv to jv is called the basic path. If

i jv v= , the path

from
iv to jv is called the cyclic path.

485

Definition 5 Independent path and independent path
set. An independent path means that one path must contain
at least one path segment that does not appear in other paths.
The set of independent paths in the activity flow graph are
called the independent path set.

D. Test Coverage Criteria

 In the process of software testing, how to ensure the

adequacy of testing is one of the important factors in

evaluating the quality of software testing. However, it is

impossible to perform exhaustive testing on test objects in

practical applications. Therefore, the following test

coverage criteria [19] are given to test the activity diagram.

1) Node coverage: the test path should make every node

of the activity flow graph visited at least once.

2) Edge coverage: the test path should make each edge

of the activity flow graph visited at least once.

3) Loop coverage: the test path should make each loop

in the activity flow graph execute zero times, one time, and

two times respectively. In this paper, in order to avoid the

path explosion problem, the cycle coverage times are set to

0 or 1, which ensures the relative completeness of the test.

In the test of the activity flow graph, in addition to

meeting the predetermined test coverage criteria, it is also

necessary to ensure that each test path is transformed from

the initial node to the end node. At the same time, in order

to improve the test efficiency, the length of the selected test

path should be as short as possible.

III. PROPOSED APPROACH

A. Basic Framework of Test Path Generation

Activity flow diagram is a simplified representation of
activity diagram, focusing on the execution path of the
activity, thereby reducing the analysis complexity of the test
scenario. The independent path set can meet the full
coverage of the edges of the activity flow graph, and the loop
in each path is executed at most once. This can test more
workflows with the least test cases and effectively avoid the
path explosion problem. The basic flow chart of test path
generation using activity diagram is shown in Figure 2.

When the activity diagram is transformed into activity
flow diagram, the coverage criteria that meet the
requirements of test scenarios are designed. We obtain the
sorted independent paths through the improved Depth-First-
Search algorithm and path priority model, thereby
improving the test efficiency. The specific strategies are as
follows:

1) According to the system requirements, the activity

diagram meeting the test scenario is constructed;

2) According to the mapping rules, the activity diagram

is transformed into an activity flow graph;

3) Using the improved Depth-First-Search algorithm,

test path set and independent path set of activity flow graph

are obtained;
4) The priority model is established to sort the priority of

independent paths.

Figure 2. Flow chart of activity diagram generating test path

B. Improved Depth-First-Search Algorithm

The Depth-First-Search algorithm is a classic graph
traversal algorithm, which is widely used in test scenarios to
obtain the path set in the graph [20][21][22]. In this paper,
the directed graph is traversed according to the
predetermined test coverage criteria and the improved
Depth-First-Search algorithm. When the algorithm
encounters a branch structure, it traverses each branch in turn
according to the number of branches. when it encounters a
final node of the branch, the branch traversal ends. Then it
backs to the branch node, and continues to traverse the next
branch until all branches are traversed. The specific ideas are
as follows.

1) Put the starting node
0v of the stack, set it to be

visited, and set the top element of the stack to v .

2) Set the flag variable, 0back = .

3) Get the sub node set C of the top element v of the

stack.
4) Traverse the set C.

The specific operation of step 4) is as follows.
a. If there is a node c C that has not been pushed to

the stack and has not been visited, push it to the stack and
mark it as visited. Then set c as the top element of the stack,

and set 0back = , and perform step 3).

b. If all nodes in C have been visited, and back equals 1,

the stack top element will pop up.
c. If there is a node c C that has been stacked and

visited in C, it indicates that there is a loop path. Determine
the number of occurrences of c in the stack. If it is equal to

one, it means that the current loop path is the first execution.
Put c in the stack and mark it as visited. Then set c as the

top element v in the stack, and execute step 3). Otherwise,

set 1back = , then visit the next sub node.

d. When C is empty, it means that the top element of the
stack is the final node. Add the path formed by the nodes in

486

the stack in reverse order to the path set P, pop up the stack

top element, and set 1back = .

The pseudo code of the improved Depth-First-Search
algorithm is described as follows.

InitStack(S);/* initialize the stack S*/
EnStack(S,v0);/* push v0 to the stack S*/
v0.visited = true;
back = 0;
v = v0;/* v represents the top element of the stack */
Proc DFS(Graph g, Node v)
{

C = {c| subnode of v};
If c not in S and c.visited == false

 EnStack(S,c);
c.visited = true;
v = c;
back = 0;
DFS(g,v);

Else if Num(c.visited) == Num(C) and back == 1
 Pop(v);

Else if c in S and c.visited == true
 If OccNum(c) == 1
 EnStack(S,c);

c.visited = true;
v = c;
DFS(g,v);

 Else
 back = 1;
 continue;

Else
/*C is empty*/

 P.add(S.reverse); /*add the reverse sequence of
stack to P */

 Pop(v);
 back = 1;

}

C. Independent Path Generation Algorithm

The generation of independent paths can be filtered in
the path set according to Definition 5. In order to improve
the test efficiency, the test path should be made as short as
possible. The specific idea of the independent path
generation algorithm is as follows.

1) Sort the paths in the path set P by length from small
to large.

2) Choose the shortest path as an independent path, and
initialize the independent path set.

3) Traverse the remaining paths in order, and verify
whether they are independent paths one by one. If so, add
the path to the independent path set.

The pseudo code of the independent path generation
algorithm is described as follows.

Proc IndepPath (Collection P)
{

 Sort(P);
 P0 = Min(P);

Q.add(P0); /*add P0 to Q */

 /*foreach Pi in P*/

 For
iP P  (i >= 1) do

 {
 If Pi is independent path
 Q.add(Pi);
 Else
 Foreach next path in P;
 }

}

D. Priority model

Different test paths have different degrees of support for
the completion of software test goals, and the execution
order of the test paths also affects the efficiency of the test
goals. Therefore, it is necessary for us to sort the different
test paths according to certain standards, and give priority to
the relatively important test paths.

Definition 6 Path fragment coverage: the proportion of
path fragments in the test path set. The greater the coverage,
the more important the path segment.

Definition 7 Test path coverage: the proportion of the
total coverage of all path segments covered by the test path
in the test path set. The greater the coverage, the more
important the test path.

When executing a test path, a test path may cover several
path segments, and similarly, a path segment may also be
covered by several test paths. Inspired by [23], this paper
reflects the importance of test path by coverage. The specific
calculation rules are as follows.

1) Calculate the sum d of the lengths of all test paths;
2) Count the number k of occurrences of each path

segment in the test path set;
3) The coverage of each path segment can be expressed

as c=k/d;
4) Calculate the coverage sum SC of all path segments

in the path set;
5) Assuming that the sum of the coverage of all path

segments in a certain test path is SP, the test path coverage
can be expressed as CP=SP/SC.

The idea of the priority model algorithm is: Suppose the
test path set is P = {P1, P2, ..., Pn}, and the path fragment set
is S = {S1, S2, ..., Sm}. The coverage of each path segment is
calculated according to the above calculation rules, then the
coverage of each test path is calculated from the coverage of
the path segment, and the sizes are compared in turn. The
greater the coverage, the higher the priority of the test path.
If the coverages of the two test paths are the same, continue
to compare the numbers of path fragments on the two test
paths. The more the number of path fragments, the higher the
priority.

The pseudo code description of priority model algorithm
is as follows.

Proc Priority (Collection P)
{

 d = Length(P);

 For
iS S  Do

487

 ki = Num (Si);
 Si.coverage = ki/d;
 SC = Sum(Si.coverage);

 For
iP P  , jS S and j iS P Do

 SPi = Sum (Sj.coverage);
 CPi = SPi/SC;
 Sort(P);

 For
iP P  , jP P  Do

 If Pi.coverage > Pj.coverage
 Give the Pi higher priority than Pj;

Else if Pi.coverage == Pj.coverage
 Compare the length of the Pi and Pj;
 If Length (Pi) > Length (Pj)
 Give the Pi higher priority than Pj;

All P has priority and put it into a list;
}

IV. CASE STUDY

Figure 3 shows the activity diagram of the manual test
paper generation case. After setting the test paper conditions,
the teacher can manually group the test paper and repeatedly
select the test questions until the test paper is completed.
After the test paper is generated, select the operation, in
which the browsing operation and the modification operation
can be performed concurrently. If the test paper needs to be
modified, the test paper will be regenerated after repeated
modification.

Figure 3. Activity diagram for manual test paper generation

According to the conversion rules proposed in the part II,
the activity diagram in Figure 3 is simplified to obtain the
corresponding activity flow graph, as shown in Figure 4.

The improved Depth-First-Search algorithm proposed in
the part III is used to traverse the activity flow graph in
Figure 4, and the corresponding path set is shown in TABLE
I.

Figure 4. Activity flow graph for manual test paper generation

TABLE I. PATH COLLECTION

Number Path

P1 v0-v1-v2-v4-v5-t

P2 v0-v1-v2-v4-v5-v8-t

P3 v0-v1-v2-v4-v5-v6-v7-v4-v5-t

P4 v0-v1-v2-v4-v5-v6-v7-v4-v5-v8-t

P5 v0-v1-v2-v4-v5-v6-v7-v6-v7-v4-v5-t

P6 v0-v1-v2-v4-v5-v6-v7-v6-v7-v4-v5-v8-t

P7 v0-v1-v2-v3-v2-v4-v5-t

P8 v0-v1-v2-v3-v2-v4-v5-v8-t

P9 v0-v1-v2-v3-v2-v4-v5-v6-v7-v4-v5-t

P10 v0-v1-v2-v3-v2-v4-v5-v6-v7-v4-v5-v8-t

P11 v0-v1-v2-v3-v2-v4-v5-v6-v7-v6-v7-v4-v5-t

P12 v0-v1-v2-v3-v2-v4-v5-v6-v7-v6-v7-v4-v5-v8-t

The independent path generation algorithm is applied to

filter the path set in TABLE I, and the independent path set
is shown in TABLE II.

TABLE II. INDEPENDENT PATH COLLECTION

Number Independent Path

Q1 v0-v1-v2-v4-v5-t

Q2 v0-v1-v2-v4-v5-v8-t

Q3 v0-v1-v2-v4-v5-v6-v7-v4-v5-t

Q4 v0-v1-v2-v4-v5-v6-v7-v6-v7-v4-v5-t

Q5 v0-v1-v2-v3-v2-v4-v5-t

488

According to the calculation method of loop complexity
V(G) defined by McCabe, let E be the total number of edges
in the graph, and V be the total number of points in the graph,
then V(G) = E-V+2. Therefore, the corresponding V(G) = 5
in Figure 4 is consistent with the conclusion in TABLE II.
Each independent path can design a test case. By comparing
the actual output results with the expected results, we can
judge whether there are errors in the path, and then achieve
the purpose of testing software functions.

According to the priority model, the independent path set
in TABLE II is prioritized to obtain Q4>Q3>Q5>Q1>Q2.
The specific parameters are shown in TABLE III and
TABLE IV. Note that the test case corresponding to path Q4:
v0-v1-v2-v4-v5-v6-v7-v6-v7-v4-v5-t has the highest priority
and needs to be tested first. Then, according to the order of
priority from high to low, the errors in software can be found
in time and the test efficiency can be improved.

TABLE III. THE COVERAGE OF PATH FRAGMENT

Path Fragment Coverage Path Fragment Coverage

v0-v1 5/38 v5-v8 1/38

v1-v2 5/38 v5-t 4/38

v2-v3 1/38 v6-v7 3/38

v2-v4 5/38 v7-v4 2/38

v3-v2 1/38 v7-v6 1/38

v4-v5 7/38 v8-t 1/38

v5-v6 2/38

TABLE IV. THE COVERAGE OF INDEPENDENT PATH

Independent

Path
Coverage

Independent

Path
Coverage

Q1 26/162 Q4 44/162

Q2 24/162 Q5 28/162

Q3 40/162

According to the independent paths listed in TABLE II.

and the mapping relationship between Figure 3 and Figure 4,
the test scenarios for this case can be generated, which is
described as follows.

Test scenario 1: Start => Generate Paper Conditions =>
Manually Generate Paper => Generated Paper => Paper
Operation Selection => End.

Test scenario 2: Start => Generate Paper Conditions

=> Manually Generate Paper => Generated Paper => Paper
Operation Selection => Browse Paper => End.

Test scenario 3：Start => Generate Paper Conditions

=> Manually Generate Paper => Generated Paper => Paper
Operation Selection => Modify Paper => Finished or not
(yes) => Generated Paper => Paper Operation Selection =>
End.

Test scenario 4：Start => Generate Paper Conditions

=> Manually Generate Paper => Generated Paper => Paper

Operation Selection => Modify Paper => Finished or not(no)
=> Modify Paper => Finished or not(yes) => Generated
Paper => Paper Operation Selection => End.

Test scenario 5：Start => Generate Paper Conditions =>

Manually Generate Paper => Select Test Questions =>
Manually Generate Paper => Generated Paper => Paper
Operation Selection => End.

The test scenarios include all possible normal or
abnormal conditions, and each test scenario generates one
test case at least. After the test scenarios are generated, the
test data that meets the requirements needs to be set, and then
the final test case set is generated by combining with the test
scenario.

V. CONCLUSION

This paper presents a method for automatically
generating test paths based on activity diagrams. According
to UML activity diagram, the improved depth first algorithm
and independent path generation algorithm are used to
automatically generate and optimize the test paths, which
solves the cycle path problem and redundancy problem in the
test process. At the same time, the test path is prioritized,
which improves the efficiency of test design. The future
work should introduce constraints, reduce the number of
invalid test paths, and provide a more effective solution for
the automatic generation of test cases.

ACKNOWLEDGMENT

This work was supported by the Natural Science
Research General Project of the Higher Education Promotion
Plan of Anhui Province (No. TSKJ2016B01), the Anhui
Natural Science Foundation (No. 1908085MF183), the
Anhui University Natural Science Fund Key Project (No.
KJ2018A0116, KJ2016A252, and KJ2017A104), Projects
61976005 and 61772270 supported by the NSFC of China,
the Safety-Critical Software Key Laboratory Research
Program (No. NJ2018014), the Training Program for Young
and Middle-aged Top Talents of Anhui Polytechnic
University (No. 201812), the Open Research Fund of Anhui
Key Laboratory of Detection Technology and Energy Saving
Devices (Anhui Polytechnic University)
(No.DTESD2020B03), and the State Key Laboratory for
Novel Software Technology (Nanjing University) Research
Program (No. KFKT2019B23). The authors would also like
to thank the anonymous reviewers and the editor for their
helpful comments and suggestions to improve the quality of
this paper.

REFERENCES

[1] Yan Zhang,Dun-Wei Gong, “Evolutionary generation of test data for
paths coverage based on scarce data capturing”, Chinese Journal of
Computers, vol.36, Dec. 2014, pp.2429-2440, doi: 10.3724/SP.J.1016.
2013.02429．

[2] ZHANG Ju, WANG Shuyan, SUN Jiaze, “Generation method for
Web link testing cases with permissions and sequence based on UML
diagram”. Journal of Computer Applications, vol.35,Jul.2015, pp.
2009-2014, doi:10.11772/j.issn.1001-9081.2015. 07.2009.(in Chinese)

[3] ZHAO Hui-qun, LU Fei, “Automatic generation of basis path set
based on model algebra”, COMPUTER SCIENCE,vol.44,Apr.2017,
pp.114-117,doi:10.11896/j.issn.1002-137X.2017.04.025. (in Chinese)

489

https://www.researchgate.net/scientific-contributions/70851809-Yan-Zhang
https://www.researchgate.net/scientific-contributions/2061449389-Dun-Wei-Gong
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.3724%2FSP.J.1016.2013.02429
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.3724%2FSP.J.1016.2013.02429

[4] Rizwan Khan, Mohd Amjad, Akhilesh Srivastava, “Generation of
automatic test cases with mutation analysis and hybrid genetic
algorithm”,3rd IEEE International Conference on "Computational
Intelligence and Communication Technology" (IEEE-CICT 2017),
Feb.2017,pp.1-4, doi: 10.1109/CIACT.2017.7977265.

[5] Chu Thi Minh Hue, Duc-Hanh Dang, Nguyen Ngoc Binh, Hoang
Truong,“USLTG: Test case automatic generation by transforming use
cases”,International Journal of Software Engineering and Knowledge
Engineering, vol. 29, Sep.2019, pp. 1313–1345, doi: 10.1142/
S0218194019500414.

[6] XIA Chun-Yan, ZHANG Yan, SONG Li, “Evolutionary generation
of test data for paths coverage based on node probability”, Journal of
Software,vol.27,Apr.2016,pp.802-813,doi:10.13328/j.cnki.jos.004967.
(in Chinese)

[7] ZHANG Chen, DUAN Zhenhua, YU Bin, TIAN Cong and DING
Ming, “A test case generation approach based on sequence diagram
and automata models”, Chinese Journal of Electronics,
vol.25,Aug.2016, pp. 234-240,doi: 10.1049/ cje.2016. 03. 007.

[8] Arvinder Kaur, Vidhi Vig, “Automatic test case generation through
collaboration diagram: a case study”, Int J Syst Assur Eng
Manag,vol.9,Apr.2018,pp.362–376, doi: 10.1007/s13198-017-0675-8.

[9] Sonali Pradhan, Mitrabinda Ray, Santosh Kumar Swain, “Transition
coverage based test case generation from state chart diagram”,
Journal of King Saud University - Computer and Information
Sciences, May.2019,pp.1-10,doi: 10.1016/j.jksuci.2019.05.005.

[10] Zahra Abdulkarim Hamza, Mustafa Hammad, “Generating test
sequences from UML use-case diagrams”, 2019 International
Conference on Innovation and Intelligence for Informatics,
Computing, and Technologies (3ICT), Sep. 2019, doi:
10.1109/3ICT.2019.8910329.

[11] Pardeep Kumar Arora, Rajesh Bhatia, “Agent-based regression test
case generation using class diagram, use cases and activity
diagram”，Procedia Computer Science,Vol 125, Jan.2018, pp. 747-
753, doi:10.1016/j.procs.2017.12.096.

[12] Mani P. and Prasanna M., “Test case generation for embedded system
software using uml interaction diagram”, Journal of Engineering
Science and Technology, Vol. 12,Apr.2017, pp.860-874,doi: 10.5281/
zenodo.1302102.

[13] WANG Xinying，JIANG Xiajun, “Generating test scenarios from
UML activity diagram using hybrid genetic algorithm”, Computer
Engineering and Applications, vol.53, Jan.2017, pp.57-62, doi ：
10.3778/j.issn.1002-8331.1503-0221. (in Chinese)

[14] Ajay Kumar Jena, Santosh Kumar Swain, Durga Prasad Mohapatra,
“A Novel Approach for Test Case Generation from UML Activity
Diagram”, 2014 International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT),IEEE,Apr.2014,pp.621-
629,doi: 10.1109/ICICICT.2014.6781352.

[15] Meiliana,Irwandhi Septian, Ricky Setiawan Alianto, Daniel, Ford
Lumban Gaol, “Automated Test Case Generation from UML Activity
Diagram and Sequence Diagram using Depth First Search Algorithm”,
Procedia Computer Science,Vol. 116, Dec.2017, pp.629-637,doi:
10.1016/j.procs.2017.10.029.

[16] F. A. Teixeira, G. B. E. Silva, “ EasyTest: An Approach for
Automatic Test Cases Generation from UML Activity Diagrams”,
Information Technology - New Generations. Advances in Intelligent
Systems and Computing, vol. 558, Jul. 2018,pp.411-417,doi:
10.1007/978-3-319-54978-1_54.

[17] Yiqun Xu and Linbo Wu, “An Automatic Test Case Generation
Method based on SysML Activity Diagram”, IOP Conference Series:
Materials Science and Engineering, Vol. 563, Aug.2019,pp.1-11,
doi:10. 1088 /1757-899X/563/5/052075.

[18] Puneet E. Patel, Nitin N. Patil, “Test cases formation using UML
activity diagram”,Proceedings of 2013 International Conference on
Communication Systems and Network Technologies(CSNT),
Apr.2013,pp.884-889,doi: 10.1109/CSNT.2013.191.

[19] MOU Kai, GU Ming, “Research on automatic generating test case
method based on UML activity diagram”, Journal of Computer
Applications,vol.26,Apr.2006,pp.844-846.(in Chinese)

[20] LI Hao, CHEN Feng, “Optimized research for test cases of UML
activity diagram based on genetic algorithm”, Modern Electronics
Technique,vol.38,Oct.2015,pp.117-20,124,doi:10.16652/j.issn.1004-
373x.2015.19.040. (in Chinese)

[21] Chayanika Sharma , Sangeeta Sabharwal , Ritu Sibal , “A Survey on
Software Testing Techniques Using Genetic Algorithm”,
International Journal of Computer Science Issues,vol.10,Jan.2013,
pp.381-393.

[22] CAO Yang,LIU Zhengtao, “A Scheme for Test Scene Automatic
Generation Based on UML Activity Diagram”, SOFTWARE
ENGINEERING,vol.19,Aug.2016,pp.19-22. (in Chinese)

[23] DU Qingfeng, FENG Guoyao, QIAN Haoran, “Path priority model of
regression testing”, Journal of Tongji University(Natural Science),
vol.44,Dec.2016,pp.1943-1948.doi: 10.11908/j.issn.0253-374x.
2016.12.020. (in Chinese)

Lili Fan, born in 1982, M. S., lecturer.

Her research interests include software

testing, machine learning and pattern

recognition.

Yong Wang, corresponding author, born

in 1979, Ph.D., professor. His current

research interests include software

testing, fault localization and machine

learning.

Tao Liu, born in 1973, M. S., professor.

Her main research interests include

machine learning, computer network and

information security.

490

https://www.researchgate.net/profile/Rizwan_Khan12
https://doi.org/10.1049/cje.2016.03.007
https://www.researchgate.net/journal/1319-1578_Journal_of_King_Saud_University-Computer_and_Information_Sciences
https://www.researchgate.net/journal/1319-1578_Journal_of_King_Saud_University-Computer_and_Information_Sciences
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jksuci.2019.05.005
https://www.sciencedirect.com/science/journal/18770509
https://www.sciencedirect.com/science/journal/18770509/125/supp/C
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.procs.2017.12.096
https://ieeexplore.ieee.org/xpl/conhome/6767437/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6767437/proceeding
https://doi.org/10.1109/ICICICT.2014.6781352
https://www.sciencedirect.com/science/article/pii/S1877050917320732#!
https://www.sciencedirect.com/science/article/pii/S1877050917320732#!
https://www.sciencedirect.com/science/journal/18770509
https://www.sciencedirect.com/science/journal/18770509/116/supp/C
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.procs.2017.10.029
https://www.semanticscholar.org/author/F.-A.-Teixeira/150105699
https://www.semanticscholar.org/author/G.-B.-E.-Silva/23118606
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-54978-1_54
https://iopscience.iop.org/journal/1757-899X
https://iopscience.iop.org/journal/1757-899X
https://iopscience.iop.org/volume/1757-899X/563
https://ieeexplore.ieee.org/author/37061186200
https://ieeexplore.ieee.org/author/37061143300
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FCSNT.2013.191
https://www.researchgate.net/journal/0253-374X_Tongji_Daxue_Xuebao_Journal_of_Tongji_University
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.11908%2Fj.issn.0253-374x.2016.12.020
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.11908%2Fj.issn.0253-374x.2016.12.020

