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Abstract—In this paper, we consider a scenario in which the en-
ergy consumption transitions from sleep mode to the active mode
for energy harvesting wireless sensor network (EHWSN). The
sensor’s energy consumption is primarily caused by the commu-
nication module. Due to the fact that the energy consumed during
sensor state transitions is not the most essential component of the
energy consumed, many experimental investigations exclude the
energy used during state transitions when calculating the overall
energy used by the sensors. However, when the frequency of
sensor state transitions rises, the energy consumption associated
with wireless sensor state transitions becomes unavoidable. As
a result, we present an energy-efficient algorithm based on Q-
learning that train the agent to minimize sensor state transitions
and prevent further energy consumption in order to accomplish
the goal of energy conservation. The experiment demonstrates
that our method can save 18.07% of energy when compared to the
Q-learning approach in ACES (ACES-QL), while also improving
the residual energy of the energy storage device by 3.40%.

Index Terms—reinforcement learning, wireless sensors network
, energy harvesting

I. INTRODUCTION

Over the last several years, a significant challenge has been
how to reduce the energy consumption of sensors in the
EHWSN area. Due to the limited energy capacity of battery-
powered sensors, the battery life of sensor nodes is crucial
for the stability of wireless sensor networks (WSN). When
the energy stored in batteries runs out, the only option is
to replace the battery. However, battery replacement costs
are too expensive in a large-scale sensor deployment setting,
particularly in remote places. Therefore, energy harvesting
technology is used to the WSN [1]–[3], which harvests energy
from the physical environment’s resources. However, owing
to the instability and unpredictability of energy harvesting, it
becomes difficult to keep the sensor node’s remaining energy
in a stable state, and so several approaches are proposed to
minimize sensor node energy consumption.

Many methods have been developed in recent years to
meet the objective of reducing energy usage by adjusting the
duty cycle of sensors. According to the energy consumption
statistics for each sensor node module, the energy consumed
by the sensor node in the wireless communication module
(sending data, receiving data, and idle) accounts for a signifi-
cant proportion, and thus reducing the energy consumption of
sensor nodes can be considered by adjusting the sensing period
(duty cycle) of sensor nodes. Q-Learning is introduced into the

EHWSN to control the power management in various works
[4], [5]. These methods achieve the sustainable operation of
EHWSN by adjusting the duty cycle. However, they neglect
the energy cost of sensor state transitions when computing the
energy consumption of nodes. We expect that this portion of
the energy usage is included in the overall energy consump-
tion, which will make the experiment more representative of
the real-world WSN environment. We observed that decreas-
ing the node’s total energy consumption is beneficial when
combined with a reduction in transiton energy consumption.

The purpose of this paper is to examine an energy-saving
technique based on Q-learning for adaptively adjusting the
duty cycle of sensor nodes. The reinforcement learning (RL)
agent determines the optimal duty cycle by interacting with
the environment in response to the sensor node’s energy
status. Different duty cycle selections will result in the sensor
transforming into various states. However, sensor node state
transitions use energy. Specifically, when the data packet
that a sensor node must broadcast is short, the energy used
during the node state transition phase will be more than
the energy used during data transmission. Frequent state
changes of sensor nodes will result in node data collection
and transmission delays, lowering node efficiency and using a
significant amount of unnecessary energy. Thus, we propose
a method for training the agent to maintain the current state
of the sensor node rather than transitioning to a new state
when the energy cost of state transition is high, which not
only reduces the sensor node’s energy consumption but also
enables the sensor to operate sustainably. This is a departure
and improvement from other classic duty cycle adjustment
algorithms, and also makes our simulation experiments more
convincing and more comprehensive. The following are the
article’s primary contributions.

• The EHWSN’s sustainability is ensured by the use of a
Q-learning dynamic power management system based on
the TBE (break-even Time) strategy (TQL).

• Comprehensive testing findings demonstrate the TQL
approach’s benefit in terms of energy savings, the TQL
approach can save 18.07 % used by nodes during opera-
tion.

The following article is divided into five sections. The
related work is introduced in Section 2, and Section 3 il-
lustrates the EHWSN sensor module. Section 4 describes
the foundational information regarding the TBE approach, as
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well as the concrete experimental technique and Q-learning
algorithm. Section 5 presents the experimental findings and
compares them to the ACES-QL method, and then give the
conclusions in Section 6.

II. RELATED WORK

Numerous research have been conducted in recent years on
sensor power management. Kansal et al. [3] proposed the first
adaptive duty cycle algorithm based on an energy prediction
model, which adjusts the duty cycle based on predicted energy,
and that article introduced the concept of energy neutrality,
which is defined as when the energy consumed by a node in a
wireless sensor network is less than or equal to the energy col-
lected by the node. Additionally, Kansal et al. [6] subsequently
presented a dynamic duty cycle adjustment (DDCA) approach
for lowering the duty cycle when the collected energy is low
and increasing it when the harvested energy is high. With the
development of reinforcement learning applications in wireless
sensor networks, Hsu et al. [5] proposed the RLDPM method,
which employs RL agent to adjust the duty cycle. Their
policy’s objective is to ensure that the QoS trained through
Q-learning is capable of satisfying the QoS required by the
sensor node itself in the energy neutral state, which means
that sensors are capable of performing data transformations in
a timely manner in wireless sensor networks, and they build
the reward function in such a manner that it is also associated
with the degree of service provided.

Furthermore, Hsu et al. [7] proposed the RLTDPM method
for meeting demand for throughput and sustaining perpetual
operation by varying the duty cycle, and the throughput is
separated into several grades. They simplified the designed
reward function, the sigmoid and Mexican hat functions, to
a specified reward function value in consideration of the low
power consumption needs of sensor nodes. Additionally, Wu
et al. [8] suggested a novel way for meeting the throughput
requirement and compared it to the RLTDPM technique, which
has a greater impact and also enhances energy consumption
efficiency. The article contributes by detailing the energy
consumption calculations for sensors used in data collecting,
processing, transmission, and reception, and emphasizing that
energy consumption is proportional to the distance of data
transmission. Simultaneously, the residual energy of nodes
with varying beginning energies will all converge to a stable
state.

Many scholars have also recommended using a fuzzy in-
ference system to manage energy dynamically in order to
decrease the complexity of state input and reward in reinforce-
ment learning. Hsu et al. [9] recommended that dynamic power
management be accomplished via the use of the reinforcement
learning technique RLFR with fuzzy rewards. The scenario
with fuzzy inference system incorporates uncertainty and
ambiguity, and the fuzzy reward function is linked to the fuzzy
state and energy neutrality. Additionally, in [10], a strategy for
dynamic energy management using fuzzy inference systems
is described. Hsu et al. also offer fuzzy-RL, which divides
the state vector into fuzzy subsets as input and obtains the

weighted average duty cycle as output, by comparing the three-
month remaining energy information with other approaches,
the suggested technique has the lowest root mean square de-
viation (RMSD) of energy neutrality. Hsu et al. have provided
a method for examining the energy neutrality of sensors using
fuzzy Q learning (FQL) [11]. Under varying beginning energy
conditions, the residual energy of nodes will converge to a state
that would sustain perpetual operation.

Due to the harvested energy’s significant fluctuation, it’s
difficult to forecast. In [12], Aoudia et al. introduced an en-
ergy harvesting management strategy focused at the harvested
energy, which included a power manager (PM) for each energy
harvesting node. To our knowledge, this is the first paper to ad-
dress the challenge of developing PM for EH-nodes via the use
of fuzzy energy harvesting. Shresthamali et al. [13] proposed
configuring a power management for each sensor node, with
the power management adjusting the duty cycle when the RL
agent interacts with the environment. In order to lower system
energy consumption to attain self-sustainability, Prauzek et al.
in [14] reduced that the energy consumption of the hardware
and software and the temperature sensors are capable sample
constantly to monitor environmental characteristic. Fraternali
et al. [15] proposed the ACES method, which uses the RL
to adjust the sleeping time of sensor nodes to reduce energy
consumption and sensor node death rates, which is the first
deployed in the real world and collect measurements (light
intensity and supercapacitor voltage level), using these data
traces to establish a simulation environment, in a deployment
experiment of 60 nodes. In a deployment trial with 60 nodes,
the nodes only stopped operating 0.1% of the time over the
course of two weeks.

III. SENSORS MODULE OF THE EHWSN

There are usually two types of energy harvesting models,
one is the harvest-storage-use [16] model, and the other is
the harvest-use (storage) [17] model. The harvest-storage-use
model means that part of the harvested energy is used to
power the nodes and a small part is stored in the energy
buffer. Therefore, this method will cause energy to be wasted
in the energy storage process. The basic idea of the harvest-
use (storage) mechanism is that the harvested energy directly
powers the node, and only the collected remaining energy
is stored. If the collected energy is insufficient, the node
Energy will be drawn from storage devices, the harvest-
storage-use mechanism used in this article. Therefore, the
energy harvesting embedded system (EHES) generally consists
of three parts, including the energy harvesting unit, the energy
storage unit, and the energy consumed unit. And we will
present the relationships between them as shown in Figure1.

A. Energy harvesting unit

The energy harvesting unit, such as the solar panel is
used to collect energy from the sun, collects energy from the
ambient environment with an uncertain and fluctuant collection
rate Rp (t), which is a function of time, but it is gradually
assumed to be constant value based on the [18]–[20]. The
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harvested energy during the [t1, t2] time interval is defined
Eharvest (t1, t2) =

∫ t2
t1
Rp (t) dt, and which is stored in the

energy storage unit to provide energy for the sensor node.

B. Energy storage unit

When the energy output of the energy harvesting unit is
insufficient, the energy storage unit releases energy to maintain
task execution. The energy of the energy storage unit fluctuates
between two thresholds Emax and Emin, where Emax denotes
the maximum capacity that storage device and Emin denotes
the minimum capacity of that storage device storage. And
during the time [t1, t2], the storage energy of storage device
is denoted Emax ≥ Estore [t1, t2] ≥ 0. If the Estore [t1, t2]
is positive, which means the harvested energy is more than
the consumed energy during the time [t1, t2] interval, on the
other hand, if the Estore [t1, t2] is negative, which means the
harvested energy is less than the consumed energy during that
time interval.

C. Energy consume unit

The energy consumption unit refers to running real-time
tasks, its energy comes from the energy harvesting unit and
the energy storage unit in the embedded system. The energy
management unit is responsible for ensuring the energy storage
unit can meet the energy consumption requirements of the
energy consume unit to avoid energy exhaustion.

According to the EHES energy model shown in Figure 1,
we can observe the harvested energy in the energy harvesting
unit, denoted as Eharvest, and we defined the stored energy
in the energy storage unit as Estore, and the consumed
energy of sensor node in energy consumed unit, denoted as
Enode. The main energy management unit that is responsible
for coordinating the balance between the various parts of
the energy according to the received information, Eharvest,
Estore, Enode, determines the duty cycle of the sensor nodes.

Energy 

management unit

Energy harvesting 

unit

Energy storage

 unit

Energy consuming 

unit

Enode
Eharvest

Estore

Duty cycle

Fig. 1. Wireless sensor energy composition model of energy harvesting
embedded system.

In our experiment, the data is real and derived from [15],
the current is measured by using the National Instrument USB-
6210 with MATLAB, and the lighting data acquired according
to the actual lighting collection situation, we approximate the
irregular real data to the data within a certain range to establish
a simulation environment. Francesco et. al divided the lighting
data into 10 different levels and verified the rationality of the
lighting data according to the actual deployment. And we use

the super-capacity (SC) as the energy storage unit because the
super-capacitor can carry out multiple charges and discharges
cycles compared to batteries.

IV. THE BASICAL KNOWLEDEGE AND Q-LEARNING
ALGORITHM

A. TBE Strategy

In this paper, Q-earning based on the TBE strategy for the
energy harvesting wireless sensor network method is proposed.
TBE, an energy monitoring management strategy, is composed
of three parts, as shown in formulation (1), Tt is the time to
transition from high-energy mode to low-energy mode, To is
the operating time during the low-energy mode, and Tr is the
transition from low-energy mode to high-energy mode time.
The TBE strategy means that the energy consumption of the
computing resource when it is in the high energy consumption
mode during the period is the same as the energy consumption
of the computing resource when the computing resource is
converted to the low energy mode during the period and returns
to the high energy mode.

TBE = Tt + To + Tr (1)

Taking the StrongARM SA-1100 processor as an example,
suppose the delay for the StrongARM SA-1100 to switch
from operating mode to sleep mode is Tt, and the delay for
switching from sleep mode to operating mode is Tr, and the
energy of the conversion process The energy consumption is
E0, the energy consumption in running mode and sleep mode
are respectively Pw and Ps, and the time from entering sleep
mode to returning to running mode is Tbe. If the StrongARM
SA-1100 consumes equal energy in running mode and sleep
mode, Which satisfies the formula (2)

Pw × Tbe = E0 + Ps × (Tbe − Tt − Tr) (2)

B. Sensor Duty Cycle

The state of the sensor node includes gradually the sensing
state and the sleeping state, we define the duty cycle period of
wireless sensor nodes i as Ti, which is composed of several
continuous sensing slots and sleeping slots. And the duty-cycle
period is given by the following equation.

Duty − cycle− period =
1

τ

∑τ
t=0Tsensing + Tsleeping (3)

where the Tsensing represents the time of sensor nodes remain
active and is set to a constant here due to that it relies on
the sensing characteristics and the communication mechanism
[21], therefore, And the duty cycle represents the ratio of
sensing time to the duty cycle period, therefore, we can
compute the duty cycle ratio by the following equation.

Duty − cycle− ratio = Tsensing
Duty − cycle− period

(4)
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C. Reinforcement learning

We choose Q-learning as our algorithm among RL algo-
rithms. The decision-maker, agent of reinforcement learning,
chooses an action a by interacting with the environment in
a random initialization state s according to ε-greedy policy,
which means to choose the max Q-value in ε probability
in Q-table, otherwise, choose the random Q-value in 1- ε
probability, after the action is performed, the agent will receive
a reward or punishment, which indicates how well the action
a performed. If a reward is received, the agent will update
by the following equation, its Q-value to a larger Q value to
increase the opportunity that to be chosen once again, but if
a punishment is received, the agent will update its Q-value to
a smaller Q value to reduce the opportunity that to be chosen
once again. Then the Q-value will also be updated to reach
a new state s̃ by the following equation and choose a action
again until the episode is final.

Q(st, at) = α{rt+1 + γmaxQ(st+1, at+1)−Q(st, at)

+Q(st, at)}
(5)

Q(st, at) is updated by adding the old Q-value (the first
on the right side of the equation Q(st, at)) to the part that
needs to be adjusted, whereas Q(st, at)is the original Q-value
of state-action quality, where the st represents the state in t
time, then the agent will receive a reward rt+1 and a future
discount reward, at represents the chosen action by the agent
in t time, and γ is called discount factor ∈ [0,1] that is set to
0.99, which is introduced to show the degree of dependence
for the reward of future and avoid the total reward is infinite
to be unable to converge, when the action a is performed, the
agent will obtain a discount for future rewards (the next Q-
value) besides the timely reward, and we call it qtarget. The
original value in the Q-table is the estimated value, we call
it qpredict, the part that needs to be adjusted is the difference
between qtarget and qpredict, the α ∈[0,1] is set to 0.1 here,
a constant value representing the learning rate.

State Space

 (Eh, En, Er, SCv)
RL Agent

state

reward
Environment

action

Action Space

(A0,A1,A2,A3,A4)

state 

Fig. 2. The reinforcement learning operation scenario of energy harvesting
sensor node.

The goal of reinforcement learning is to learn a strategy to
maximize reward, that is, the agent is expected to perform a
series of actions to obtain as many average returns as possible.

To evaluate the expected return of a strategy, a value function
needs to be defined. The value function is divided into a state-
value function and aan action-value function. The state-value
function represents the future obtained reward by the state s
based on the strategy π (refers to the probability of performing
action a in state s). And the action-value function refers to the
expected reward return obtained after performing action a for
state s based on the strategy π. Based on formula 6, the quality
of the action a can be observed from formula 7. The equation 7
can also be written in the form of a compound reward (timely
reward in state s and the probability of the next state multiplied
by the state value of the next state), which can more intuitively
show the relationship between equation 6 and equation 7.

Vπ(s) = Eπ[

∞∑
k=0

γkRt+k+1|St = s] (6)

Qπ(s) = Eπ[

∞∑
k=0

γkRt+k+1|St = s,At = a] (7)

D. RL formulation

States: Based on the energy harvesting wireless sensor
network model, we design that the state space consists of four
state vectors. And in order to observe the energy consumption
of sensor node, we introduce the residual energy as a state
vetor criterion.

(Sh, SCv, Sn, Sr) ∈ S.

Sh(t): represents the harvested energy in t time solt accord-
ing to the collected indoor light energy, and the light is divided
into 10 levels due to the difference in the light intensity.

Sh(t) ∈ L(i) = {Light1, Light2, · · · , Light10} , 1 ≤ i ≤ 10

where Lighti represents that the higher light intensity with
the larger number of i.
SCv (t) : represents the SC voltage level in t time solt, the

SC voltage is also divided into 10 levels.

SCv(t) ∈ V (i) = {SCv1, SCv2, · · · , SCv10} , 1 ≤ i ≤ 10

where SCv1 represents the min SC voltage level and is 2.1V,
if the super-capacity voltage reaches < 2.1V, the system will
terminate all operations to replenish energy. SCv10 represents
the max SC voltage level, and in this study the super-capacitor,
providing maximum voltage 5V is applied.
Sn (t): represents the consumed energy of nodes in t time

solt, which also are used to design the reward function. And we
also divided it into different levels to reduce the computational
complexity.
Sr (t): represents the residual energy of nodes in t time and

the residual energy is expressed by the residual energy level.
It is given by the following equation.

Er(t+ 1) = Er(t) + Eh(t)− En(t)− Ep(t) (8)

where Er(t+1) is the residual energy in t+1 time solt, which
is composited of the residual energy of sensor node in t time
solt Er(t), a finite amount energy that the system harvests
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in t time solt Eh(t), and the total consumed energy Ec(t)
including the energy consumed by the node En(t) in t time
solt and the energy consumed by sensor state transition Ep(t)
in t time solt.

Action: We assign the 15minutes as a timestep of the
take action of node and 24 hours as an episode, in other
words, the sensor nodes take another action every fifteen
minutes, which is reasonable if the timestep is too small, the
communication energy of the nodes will be wasted. The action
(A0, A1, A2, A3, A4) is that the sleep time of the designed
node is 900s, 300s, 60s, 15s, 0s.

TABLE I
NODE SLEEP TIME BASED ON ACTION INDEX

Action Index Node Sleeping Time(s)
0 900
1 300
2 60
3 15
4 0

Reward function: Based on the main idea of saving energy
of sensor node, we compared the energy consumption of
sensors with different sleep times with those without sleep
time. Since the switching energy consumption is calculated
when the state transitions, it is likely that the energy consump-
tion with sleep time is greater than the energy consumption
continuously in the sensing state. In this case, we train the
agent to maintain a continuous sensing state, not only ensure
timeliness of data transmission but also save energy. And
the setting of the reward function should consider ensuring
the sustainable operation of the node. Therefore, the reward
function is designed if the SC voltage reaches ≤ 3V, the agent
will receive a -300 reward, otherwise, the agent will consider
the difference between the energy consumed by the executed
action and the sensing energy Es(t) without sleep time, we
introduce the µ to balance the node sleeping time Tnode
and the energy consumption, alternative reward is receied by
learning agent is follows.

reward =

{
µTnode +

1−µ
Ec(t)

, Ec(t) = Es(t)

µTnode +
1−µ

(Es(t)−Ec(t))Ec(t)
, otherwise

(9)

Algorithm 1 describes the application implementation of Q-
learning on sensor nodes. Lines 1-3 initialize the Q table,
and line 4 means to obtain the current state, supercapacitor
voltage and current informations. We define the time step as
15 minutes, and the agent chooses an action a according to the
ε-greedy strategy in this interval. The ε is set to the minimum
value until the time interval T ends, and ε will be updated,
the agent will obtain a reward and the next state to update
the Q table. Then the sensor node updates the sleep time and
sends the new state again after the next 15-minute interval. In
the experiment, we set some Q-learning hyper-parameters, as
detailed in the Table II.

Algorithm 1 Q-learning Algorithm for EHWSN
1: Initialize qtable as an empty set
2: Initialize action a, state scurr, snext time passed = 0
3: ε = εmin
4: scurr ← state
5: while timepassed < episode duration do
6: Choose a from s using policy derived from ε-greedy
7: wait for T time units, time passed += T
8: receive reward and snext ← state
9: Update qtable using below interation formula

10: Q(s, a)← Q(s, a)+α{r+γmaxQ(s′, a′)−Q(s, a)}
11: ε = ε+4
12: scurr ← snext
13: end while

TABLE II
Q-LEARNING HYPER-PARAMETERS USED FOR SIMULATIONS.

Hyper-Parameter Value

Learning rate 0.1
Reward-decay (γ) 0.99

Epsilon max (εmax) 1
Epsilon min (εmin) 0.1

Epsilon increment (4) 0.0004
Episode Duration 24 hours

Wait Time T 15 mins

Since we changed the sleeping time of the sensor in the
15-minute interval, the working mode of the sensor will also
be different. We simulated the working mode of the sensor
in the 15-minute interval as shown in Figure 3, the sensing
mode is shown in Figure 3(a) when the sleeping time is 300,
the sensor will perform three times sensing, the sensing mode
is shown in Figure 3(b) when the sleeping time is 900, the
sensor will perform one time sensing, and the sensing mode
is shown in Figure 3(c) and Figure 3(d) when the sleeping
time is 60 and 15 respectively, the sensor will perform several
times sensing. We can observe that the working modes of task
sets τ1 and task sets τ2 from Figure 3(e) and Figure 3(f), when

         

(f)

(b)

   

(d)

   

(e)

(a)

   

(c)

Fig. 3. Wireless sensor working modes of energy harvesting embedded system
(Here blue slot means senseing, green means sleeping).
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the action with a sleep time of 15 is executed, compared with
the action with a sleep time of 900, the number of sensor
sensing will significantly increase. And we compare that the
energy consumption of the first hundred episodes as shown in
Figure 4, we can also observe that sometimes that the energy
consumed by using ACES-QL method is more than the energy
consumed by using TQL from Figure 4. This is due to the
increase in the number of times the sensor switches between
the sensing state and the sleep state, resulting in an increase
in the total energy consumption. This provides us with a good
trend to show that the method is implementable and useful.
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Fig. 4. Energy consumption of the wireless sensor node in different working
modes.

V. SIMULATION RESULTS

Our simulation results are based on the initial energy setting
of 52.8% of the maximum capacity of the super capacitor,
and simulate indoor lighting environment. The experiment
was carried out after modifying some data of [8]. To further
understand how well the energy saving of the proposed method
TQL compared with the ACES-QL mmethod, in this study,
we focus on the three-month energy consumption comparison
from the vernal equinox to the summer solstice as shown
in Figure 5. It can be intuitively seen that the ACES-QL
method consumes more energy than the TQL method from
Figure 5, and the convergence rate of the proposed method
is more quickly than the ACES-QL method, this is because
the more times of state transition are preferred to consume
the more energy in ACES-QL method, and the agent of the
TQL method avoids to perform the different state transition
rather than executing sensing in a continuous-time solt. which
save the energy consumption of sensor node and satisfy the
requirement of the throughput that is the actual application
object for EHWSN system [22]. We can observe that the
TQL saves about 18.07 % of the energy consumption than the
ACES-QL method, the saved energy consumption contributes
to extend the life of the wireless sensors. The TQL algorithm

satisfies the low power consumption requirements of sensor
nodes without degrading the performance of sensor nodes.

� �� �� �� �� �� �� 	� 
� ��
����

����

����

����

����

����

����

Co
nsu

me
d E

ner
gy

d a y

 A C E S - Q L
 T Q L

Fig. 5. Average consumed energy result comparisons of long term simulation
showing day 0 to 90.

� �� �� �� �� �� �� 	� 
� ��

���


����

����

����

����

����

����

����

����

���	

Re
sid

ual
 En

erg
y

d a y

 A C E S - Q L
 T Q L

Fig. 6. Average residual energy result comparisons of long term simulation
showing day 0 to 90.

We compared the remaining energy of the sensor node
similarly as shown in Figure 6. The amount of remaining
energy (RBE) also indicates the degree of energy saving of
the sensor node. Both TQL and ACES-QL can achieve the
goal that the residual energy of the sensor node tends to a
stable state, and reduce the energy wasted by the agent during
the exploration period. However, due to the consumed energy
of the sensor node by ACES-QL is more the consumed energy
of the sensor node by the TQL, the remaining energy by the
ACES-QL is also expected. We can observe that the proposed
method TQL has a significant improvement over the remaining
energy of the node for ACES-QL method, and increases the
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remaining energy by about 3.40% compared with ACES-QL
method, which also proves that the proposed method TQL
can reduce efficiently the energy consumption of the sensor
node, extend the life of the sensor node, and ensure the
sustainable operation of the sensor node. Regarding the impact
of energy saving on sensor performance, about the sampling
performance of the sensor, it is verified that under different
sampling frequencies, the sampling performance by the sensor
in the simulation and the sampling performance by the actual
sensor almost coincide, which also indicates the real-time and
accuracy of the sensor sampling in the simulated environment.

VI. CONCLUSION

In this study, we propose a method for controlling the energy
consumption of sensor nodes based on reinforcement learning.
This method considers the energy consumption of sensor state
transition and tries to find a suitable transition time to reduce
the number of sensor transitions. The experimental results
demonstrated that the energy consumption of the sensor nodes
of the proposed method is in a lower energy consumption
state, and the average remaining energy is maintained in a
greater energy state among other methods. And we analyzed
the influence of energy saving on the sampling rate of the
sensor. Of course, the metric of the sensor performance not
only includes the sampling rate, we hope to study more about
the performance analysis in the actual deployment in the
future. And the consideration of experiments under different
conditions, we hope that the exploration is not limited to
simulation experiments, but also on actual deployment, the
indicators for evaluating the performance of the algorithm will
also be improved, and more detailed experimental discussions
will be explored to support the credibility of the experimental
results.
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