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Abstract—In order to systematically generate sufficient test 
scenes for the spacecraft’s controller software, an automatic 
model-based test cases generation method is proposed in this 
article. More specifically, the test requirement is modelled as 
a statechart diagram using Unified Modeling Language, which 
can be converted into an intermediate model. After that, test 
scenes that consider the entire natural scenes are automati-
cally generated from this intermediate model. In this paper, a 
method to generate test scenes in a particular distribution is 
proposed, which may reveal more mistakes in the software. The 
testing framework is a model-based test cases generation method 
combined with Combinatorial Testing and Adaptive Random 
Testing, which improves the deficiencies of the designing test 
scenes manually. The test scenes generated by this method can 
be directly used for the test of spacecraft.

Keywords: spacecraft software, model-based testing, test cases 
generation, Combinatorial Testing, Adaptive Random Test-ing

I. INTRODUCTION

With the continuous evolution of spacecraft designing tech-
nology, the autonomy and intelligence of spacecraft are getting
higher and higher. Some spacecraft can complete the corre-
sponding tasks according to the ground command and adjust
the tasks according to the changes of the space environment.
The increasing autonomy and intelligence of spacecraft mean
a higher demand for its ground testing. The focus of the testing
has changed from verifying the function and performance of
hardware to examining its ability of mission completion in the
real space scene.

It takes the source code as the testing object in traditional
code-based testing, which is a necessary and critical process
for spacecraft software development. However, this kind of
testing cannot directly verify whether the desired function
of the software has been achieved correctly. Therefore, the
code-based testing alone can not satisfy the requirements of

∗ Beibei Yin is the corresponding author.

reliability and quality of spacecraft systems with increasing
functions and complexity.

A typical example is the controller software of the space-
craft. After a spacecraft enters orbit, it needs to complete a
series of actions such as despinning and unfolding the solar
panels before it is ready to perform tasks. These actions
are completed under the ground command and the space
environment. The controller software that completes this series
of actions is the test object of the paper.

In order to thoroughly test the spacecraft before its launch-
ing, testers need to treat the control system as a black box
and test its function in a simulation environment. In the
past, testers manually designed test cases to carry out on the
software, which is time-consuming and laborious. However,
spacecraft has plenty of working states and transitions among
these states are complex. Moreover, the logic conditions of
the transition also may be complicated. So the adequacy and
comprehensiveness of such tests, highly dependent on personal
experience, are suspicious. In this regard, research on how to
automatically generate better test cases for controller software
is conducted.

Concerning automatic testing, there are many test generation
methods. Model-based Testing (MBT) provides a technique for
test cases generation using models extracted from software un-
der test [1]. A formal model describing the software or system
behaviour is needed in an MBT method. Moreover, the survey
showed that MBT was mostly applied to systematic testing
[2]. The Unified Modeling Language (UML) statechart is a
better model to be used in model-based test cases generation
due to its capabilities to capture the changes in the lifecycle
of an object [3]. In fact, differentiating the MBT approaches
by the model used, the UML statechart based method was
mostly used [2]. The model used in our paper is the UML
statechart diagram. Combinatorial testing techniques deal with
the problem of reducing the considered input combinations
while ensuring the adequacy of the resulting test suite [4].
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Cu D. Nguyen proposed a method to combine model-based
and combinatorial testing approaches. The idea of that is
used in our paper because the combination of parameters of
spacecraft is huge. According to Adaptive Random Testing
(ART) [5], a program input far away from non-failure-causing
inputs may have a higher probability of causing failure than
the neighbouring test inputs, which may guide the generation
of concrete inputs for the spacecraft.

We divide the problems to be solved into the following
parts:

1.How can testing requirements of spacecraft controller
software be modelled with all test information preserved and
without any ambiguity?

2.How to find all the paths that can satisfy the test require-
ments from the statechart diagram?

3.How can a test path of spacecraft be divided into disjoint
equivalence classes considering the complexity of conditions
and their combinations on the path?

4.How to generate concrete test scenes from each equiva-
lence class and ensure the coverage of test scenes in the input
domain?

An automatic model-based test case generation method was
proposed in this paper, and the method used will be introduced
from the following aspects in the next section:

Subsection A will illustrate the testing requirements of
controller software and the modelling rules.

Subsection B will introduce the method to transform the
statechart diagram into a directed graph, an intermediate
model.

Subsection C will show how to find test paths from the
directed graph to satisfy the test requirements.

For each test path found, subsection D will illustrate how
to divide it into equivalence classes.

Subsection E will show the technology to generate adequate
test scenes from each equivalence class automatically. In the
end, a metric for the difference between test scenes and a
method to generate test cases in a particular distribution will
be proposed.

II. RELATED WORK

The MBT depends on three key technologies: (i) the model
used for the software behaviour description, (ii) the test-
generation algorithm, and (iii) tools that generate supporting
infrastructure for the tests [1].

The UML statechart is a better model to be used in model-
based test cases generation due to its capabilities to capture
the changes in the lifecycle of an object [3]. Differentiating
the MBT approaches by the model used, the UML statechart
based method was mostly used [2]. In the UML statechart
diagram, each state represents a working state of the system,
and the whole diagram describes the test requirements of the
system.

Test requirements are specific things that must be satisfied
or covered during model-based testing. Guided by the testing
criteria, test cases generated should be adequate to make test

requirements be satisfied. According to Jeff [6], The ade-
quacy criteria can be divided into specification-based criteria
or program-based ones. In particular, A specification-based
criterion specifies the required testing in terms of identified
features of the specifications of the software. It can be used
for black-box functional testing of the system. A specification
plays two main roles in software testing [7]. One is to provide
the necessary information to check whether the program’s
output is correct, known as the oracle problem [8]. The other
is to provide information to select test cases and measure test
adequacy [9].

The results of the paper [10] revealed that most of the work
in test case generation using UML statecharts translated the
UML statechart diagram into an intermediate model. The in-
termediate models include extended finite-state machine [11],
directed graph [12], testing flow graph [13], state graph [14],
and so on. While converting the statechart diagram into the
intermediate model, the model always needs to be flattened due
to states’ hierarchical and concurrent structure [11]. Then the
test cases are generated later from the intermediate model by
applying various algorithms, such as genetic algorithm (GA)
[15], Depth First Search (DFS) [16], Breadth-First Search
(BFS) [17] or other customized algorithms.

The testing criteria, including Transition Coverage, Full
Predicate Coverage, Transition-Pair Coverage and Complete
Sequence were described in the first formal testing technique
based on UML [6]. In addition to these criteria, State Coverage
[13] is another commonly used testing criteria. It should be
noted that the Basic Path Coverage criterion was proposed
while generating test cases from activity diagrams using
gray-box method [18]. This conception was used in testing
generation from the UML statechart diagram [19].

Functional testing and specification-based testing aim at
defining test cases that can exercise the functional require-
ments of a system, by systematically selecting representative
combinations of its parameter values [20]. Combinatorial
testing techniques deal with the problem of reducing the
considered input combinations while ensuring the adequacy
of the resulting test suite [4]. Cu D. Nguyen proposed a
method to combine model-based and combinatorial testing
approaches [20] by deriving test sequences from models and
by completing them with selective test input combinations.
Considering each path as a root of a tree, the leaves of the
tree define equivalence classes of input data, and the combina-
torial heuristics define the combinations to use during testing.
However, the level of automation of the method proposed is
not particularly high as the equivalence classes of the events
need to be manually configured. Moreover, concrete test inputs
were created based on the classification specifications, but the
distribution of the inputs was not taken into consideration.

Considering the distribution of the inputs, program inputs
that trigger failures (failure-causing inputs) tend to cluster into
contiguous regions (failure regions) [21]. So, a program input
that is far away from non-failure-causing inputs may have a
higher probability of causing failure than the neighbouring
test inputs, which is the idea of ART [5]. Based on this, ART

374



aims to achieve an even spread of (random) test cases over the
input domain. ART generally involves two processes: one for
the random generation of test inputs; and another to ensure
an even-spreading of the inputs throughout the input domain
[22].

III. METHOD

In this section, the method of generating test cases from test
requirements will be illustrated in order. Before we begin, the
entire flowchart of automatic test scenes generation is attached
below for clarity of presentation, shown in Fig. 1.

Fig. 1. Flowchart of automatic test scenes generation

A. Modelling for test requirements

In the introduction, we mentioned that after the spacecraft
enters orbit, the spacecraft needs to complete a series of
actions such as despinning and unfolding the solar panels
before it is ready to perform tasks, as shown in Fig. 2.

So let us see how the testing goes: in the simulation envi-
ronment, we need to determine whether, during the simulation,
the spacecraft can respond correctly to the commands from the
ground considering the simulated space environment where it
is.

Fig. 2. The control process of the spacecraft

Here is a simple example:
After the spacecraft enters orbit, the ground gives the

spacecraft an instruction, telling the spacecraft to ”begin de-
spinning”. During the process of despinning, spacecraft needs
to generate two signals, telling the ground, ”I am despinning”.

When the angular velocity sensors display that rotation speed
has been reduced to a certain level, the spacecraft automati-
cally turns to the next stage, where it starts unfolding the solar
panels. Moreover, during this process, the spacecraft generates
another two signals to tell the ground, ”I am unfolding the
solar panel”. The process continues until the sensors show
that the solar panels have been unfolded.

That is what developers expect the software to do. If there
is any inconformity between behaviours expected and those of
the software during testing, the test fails.

The above is a small part of the whole control process. There
may be complex transitions between the behaviour modes
of the spacecraft, so we built the dynamic behaviour of the
spacecraft into a UML statechart diagram to describe that.

We combed through the information needed while testing
the spacecraft controller software and divided it into four
categories:

• Current working states of the spacecraft (CSOS):
Such as ”despinning mode” and ”solar panels are unfold-
ing mode”, and so on. The spacecraft can only be in a
specific working state at any given moment.

• Ground commands and interferences received by the
spacecraft (GCAI):
Ground commands are easy to understand, and interfer-
ences refer to some unexpected conditions divided into
two parts: external interferences and internal ones.
External interferences: For example, an external impact
(a rock hits the spacecraft) can be detected by the
spacecraft’s torque sensors, and an associated signal can
be transmitted to the controller software.
Internal interferences: For example, if one momentum
wheel breaks down, it is also an interference for the
controller.
These signals may change the working state of the
spacecraft.

• Sensors’ values which represent the state of the spacecraft
(SV):
For instance, the angular velocity sensor’s value can
directly reflect whether the spacecraft is still spinning.

• Feedback signals from the spacecraft (FS):
The spacecraft keeps the ground informed of its current
condition by sending feedback signals to ground station.

TABLE I
MODELLING RULES

Information needed while testing UML state diagram element
CSOS State
GCAI Signal event

SV Change event
FS Action

The testing requirements of spacecraft controller software
were modelled according to the rules above,as shown in Table
I. A UML statechart diagram was built without ambiguity,
making it more visible for testers to view and modify the
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testing requirements. The UML statechart diagram built is the
model from which we generate the test scenes for spacecraft.

Definition 1: The UML statechart diagram modelled is
defined as a tuple D = 〈S, T, δ, s0, F 〉, Where
S is the set of all states. A state could contain actions;
T is the set of transitions. A transition can contain events

with predicate expressions;
δ: S × T → S is a function describing the transitions

between states;
s0 ∈ S is the initial state;
F ∈ S is the final state.
It should be noted that there may be cycles in the state

diagram. For example, when the spacecraft is in a particular
working mode, the torque sensor captures a change due to the
impact of a meteorite. According to the design requirements,
the spacecraft should not be influenced and continue working
in this mode.

Assume that state A is the current state of the spacecraft
in the state diagram. When the torque sensor gets a value, a
transition starting from state A to state A will be triggered.
This kind of cycle in the statechart diagram is shown in the
Fig. 3.

In addition, the transitions in the established UML statechart
diagram for spacecraft controller software have no guard
conditions, which is determined by the features of spacecraft
controller software. When the spacecraft is in a specific state,
once an event that satisfies the trigger condition occurs, the
transition occurs.

Fig. 3. A cycle in diagram

B. Model preprocessing

This section will show how to convert the statechart diagram
D into a directed graph G.

The established UML statechart diagram contains all the
information in the testing requirements, which can generate the
corresponding XML (Extensible Markup Language) document
through XMI (XML based Metadata Interchange).

The transformation process ensures the consistency of the
information in the UML statechart diagram and the infor-
mation in the XML document. In an XML document, the
states and transitions of the diagram are stored as elements
with attributes and other elements. DOM (Document Object
Model) method was used to extract information from the XML
document [23]. All the elements of the XML document were
stored in a tree structure by the DOM method, and there are
functions to access or modify specific elements.

The model built using a statechart diagram may contain
hierarchical relationships. For example, a state may contain
several substates, which is called a composite state. We

modelled some states of the system as composite states. For
example, one of its states is ‘state A’, which contains two
different substates, ‘A1’ and ‘A2’ (As shown in the figure, an
empty state is added according to the specification for UML
modelling). Maybe two different controlling methods can be
used when the spacecraft was controlled to complete an action.
As shown in Fig. 4,the spacecraft in the state ‘A1’ or ‘A2’ is
also in state ‘A1’.

Fig. 4. A composite state

Fig. 5 shows a part of a whole statechart diagram. Although
this kind of hierarchical relationship can reduce the complexity
of the model, it is unobvious to find the relationship among
states from the diagram containing such composite states. So
the model needs to be flattened to make it easy to understand
the semantics of the model and convenient to generate test
cases from it. The flattening rule is shown in this section.

We assume that for a composite state sc, if the initial
state inside the composite state is sc−I , there are n substates
sci(1 ≤ i ≤ n), and the substate connected to the state sc−I is
sc1. The following is the strategy of flattening for spacecraft:

1) The target state of a transition t goes into a composite
state sc may be the composite state sc or its substate sci,
and t goes from s1.
If the target state of t is sc, generate a new transition
t′ from the state s1 to the substate sc1 connected to the
initial state sc−I ;
If the target state of t is sci, generate a new transition t′

from the state s1 to the substate sci.
Then delete the original transition t, and add the entry
actions of the composite state sc to the effects of the
new transition t′.

2) The source state of a transition t goes from a composite
state sc may be the composite state sc or its substate sci,
and t goes into s2.
If the source state of t is sc, generate n new transitions
ti (1 ≤ i ≤ n) from the substates sci (1 ≤ i ≤ n) to the
state s2;
If the source state of t is sci, generate a new transition
t′ from the state sci to the state s2.
Then delete the original transition t, and add the exit
actions of the composite state sc to the effects of the
new transition ti or t′.

3) Delete the initial state in the composite state sc.
4) Add the do actions of the composite state sc to those of

every substate sci of sc.
According to the rules above, a statechart diagram D (for

example, shown in Fig. 5) was transformed to a flattened one
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D′ (shown in Fig. 6).

Fig. 5. A diagram with a composite state

Fig. 6. Flattened diagram

Since there is no guard condition for the triggering event
according to the modelling method in this paper, there is no
infeasible path after flattening. (If the trigger condition has
a guard condition and the diagram is flattened, there may
be a path whose guard condition may have a conflict with
other conditions of it in the flattened diagram, in which case
conflicts-resolving method is needed [24]).

Definition 2: A directed graph G can be defined as a tuple:
G = 〈V,E〉, Where
V is a non-empty set of vertices, used to represent states

information;
E is a set of directed edges, used to represent the informa-

tion of transitions between states.
Each e in E corresponds to a tuple 〈u, v〉, where u and v

are two elements in V and vertex u and v are the head and
tail of the edge e, respectively. To get the directed graph G
from the flattened statechart diagram D′, the information of
states and transitions in the XML document of D′ was stored
in the instantiated vertex class and edge class. In particular,
the initial state of D′ involves the starting vertex, and the final
state involves the ending vertex. As an attribute of the vertex
class, the adjacency list was used to store the information that
by which edge this vertex is connected to other vertices. So
far, a directed G graph class was built.

C. Test paths searching

The flattened directed graph G records all the states of the
spacecraft and transitions of them. The path from the begin-
ning vertex to the ending vertex represents the spacecraft’s

various states and their transitions, from entering the orbit to
the end of control.

Definition 3: A test path (TP ) is an abstract path that
represents a sequence of states and transitions from the initial
state of the spacecraft to the final state, which can be defined
as a list TP = [v0, e1, v1, e2, v2, . . . , en, vn], where
vi(0 ≤ i ≤ n) is a vertex in the directed graph G

representing a state of spacecraft. In particular, v0 and vn
represent the initial state and the final state of the spacecraft,
respectively;
ei(0 ≤ i ≤ n) is an edge from vi−1 to vi.
The first step for test case generation is to find the set of

such paths from the directed graph.
Testers can choose different levels of test coverage accord-

ing to their requirements, and different levels of coverage
imply different sets of paths. The selection of test coverage
criteria should be based on the adequacy and the cost of the
test.

Coverage criteria based on the statechart diagram include
state coverage, transition coverage, basic path coverage, full
ZOT path coverage [25] and so on.

Here are the conceptions of these coverage criteria:
1) State coverage: the set of test paths can cover every state

in the state machine diagram.
2) Transition coverage: the set of test paths can cover every

transition in the state machine diagram.
3) Basic path coverage: the set of test paths can cover every

independent path of the statechart diagram. If there is a
loop, the loop is executed for 0 and 1 time. A independent
path has at least one transition which is not covered by
any other paths in the set.

4) Full ZOT path coverage: the set of test paths can cover
every independent path outside the loop, and each loop
of the statechart diagram is executed for 0, 1 and 2 times,
respectively.

The following are the practical significances of these cov-
erage criteria for the spacecraft software:

1) The set of test paths satisfying the state coverage will
cover every possible working state of the spacecraft in
space.

2) The set of test paths satisfying the transition coverage will
cover every event which can cause the transition between
working states of spacecraft.

3) The set of test paths satisfying the basic path coverage
will cover every independent path of the spacecraft.

4) The set of test paths satisfying the full ZOT path coverage
will cover every independent path outside the cycles of
the spacecraft, and the cycles of it will be covered 0, 1
and 2 times.

The first three coverage criteria are related. The paths
set satisfying transition coverage satisfies state coverage, and
paths set satisfying basic path coverage satisfies transition
coverage. The cycles in the statechart diagram of spacecraft
need to be executed at most once according to the basic path
coverage. If the cycles in the states need to be executed twice
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while testing, the full ZOT coverage criterion needs to be
considered.

Test paths searching methods based on the above coverage
criteria were improved on graph search methods, such as DFS
and BFS.

For the state coverage criterion, Breadth-First Search is used
to generate a breadth-first tree without repeated states. The tree
has n leaf nodes, node For each leaf node in the tree, a path
from the starting node to it can be obtained. However, since
the test path obtained may not contain the ending node, the
generated test path needs to be extended to be complete.

Particularly in the completing path process, the shortest path
from a leaf node to the ending node is jointed to the path for
each leaf node if it is not the ending node. Algorithm 1 was
used to generate the test paths set, and the flowchart of the
algorithm is shown in Fig. 7:

Algorithm 1 Completing path process based BFS
Input: the directed graph G.
Output: the set of test path PS.
1: obtain the breadth-first tree for G, and define the set of leaf nodes as SOF
2: define the set of test paths as PS = {}
3: for ln ∈ SOL do
4: obtain a path p (from starting node to ln)
5: PS ← p
6: end for
7: repeat
8: for ln ∈ SOL do
9: if ln is not the ending node then

10: DP = {}
11: for cn ∈ the set of direct successors of ln do
12: DP ← path(from cn to the ending node)
13: end for
14: find the shortest path sdp ∈ DP
15: joint sdp to the path p(from the starting node to ln)
16: update PS
17: end if
18: end for
19: until PS cannot be updated anymore
20: return PS

Fig. 7. Flow chart of breadth-first searching

For example, suppose that node a is the starting point, and
the node e is the ending point in the directed graph transformed
from the statechart diagram of the spacecraft, as shown in
Fig. 8. When using the graph search algorithm, the node c
cannot be extended because its child node d is already in the
extended list, so node c is a leaf node. In the end, two paths
are obtained: {〈a → b → c〉, 〈a → b → d → e〉} . This set
covers all nodes (the state of the spacecraft), but its element
does not conform to our definition of test path. It is necessary
to complete the path 〈a→ b→ c〉 to 〈a→ b→ c→ d→ e〉
to get the desired paths set {〈→ b→ c→ d→ e〉, 〈a→ b→
d→ e〉}.

The path search algorithm for the transition coverage cri-
terion is similar to the above one.An algorithm was proposed
which can generate base paths set with character that length
of each path is the smallest by visiting control flow graph
according to Depth-First Search method and flag set of edges
and nodes [26], which was used in this article to generate basic
paths set for statechart diagram.

Fig. 8. A example for path searching

D. Logical sequences generating

For the next step of the work, we first give the definition
of a test case.

Definition 4: A Test Case is defined as a tuple tc =
〈input, output〉. When a test input is given to the spacecraft
under a specific working state for execution, the spacecraft
should output accordingly.

From the definition of a test case, it is not difficult to know
that for a test path of the system, one test case can be generated
from each transition and the successor state of the transition.
There are many such states and transitions on one test path,
so plenty of test cases can be generated from each test path,
as shown in Fig. 9.

Fig. 9. Test cases on one test path

In the statechart diagram, events are the conditions that
trigger the transition, but they are not equivalent to the inputs
of the test. According to the modelling rules in this article,
events consist of signal events and change events. Signal
events come from outside the system, and they can be used as
the system’s input while testing. However, change events are
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some of the conditions inside the system that can trigger the
transferring, and these events should occur with the simulation
goes but not be input by users or the environment. So whether
change events occur can be used as criteria to judge whether
the system is working correctly, that is to say, the test outputs.

The effects in transitions, the actions of states, and the
change events constitute the spacecraft’s test outputs, as shown
in Fig. 10.

Fig. 10. The components of the inputs and the outputs

According to the definition, a test case of the spacecraft is
dependent on its current state of it. A test case can be generated
for each transition with the successor state of the transition.
Many such states and transitions are on a test path, so many
test cases can be generated on each test path. Test cases and
test sequences are inextricably linked.

Definition 5: A Test Sequence is a sequence of the
various test cases generated from each test path in order. A
test sequence is defined as a list ts = [tc1, tc2, tc3, . . . , tcn],
reviewing the example in Fig. 9.

Definition 6: A Logical Sequence is a sequence of logical
conditions according to which the inputs of a test sequence
are generated. A logical sequence is defined as a list ls =
[c1, c2, c3, . . . , cn],where ci (1 ≤ i ≤ n) is a logical condition
referring to the parameters associated with the i-th transition
of the test path.

A logical sequence is an abstract form of a test inputs
sequence. In other words, a sequence of test inputs is the
embodiment of a logical sequence. For example, assuming that
a test path has two transitions t1 and t2, the signal event of
t1 is ‘a > 1’, and that of t2 is ‘b < 20’. [a > 1, b < 20]
is a logical sequence while [a = 3, b = 12] is a test inputs
sequence of it.

However, things are not as simple as the above example.
The logical condition of a transition may involve more than
one parameter. In order to cover the input domain adequately
while testing, equivalence partitioning is needed for the input
domain and then design different test inputs to cover them
separately.

Considering the logical condition of the signal event on each
transition, we divided it into disjoint logical conditions, which
are also called sub-conditions in the following text.

The logical condition of the signal event on each transition
is a predicate formula F . According to the Full Predicate
Coverage Criterion [6] [27], each major predicate P of F is
set to be True and False, respectively (if the truth value of
the predicate P can determine the truth value of the predicate
formula F , P is called the major predicate of F ).

This paper implemented this method of condition decom-
position to decompose the logical condition into disjoint sub-
conditions automatically, but this paper only saved the sub-
conditions of which the truth values are True. For example, a
logical condition is a predicate formula (X ∨ Y ) ∧ Z and it
can be automatically decomposed into disjoint sub-conditions
(i) X ∧ Y ∧ Z, (ii) ¬X ∧ Y ∧ Z, (iii) X ∧ ¬Y ∧ Z.

Further, the combination among sub-conditions of every
transition could be huge when generating a logical sequence
along the test path. If there are n transitions [t1, t2, t3, . . . , tn]
along a test path and the signal event of transition ti can
be decomposed Vi sub-conditions 〈c1, c2, c3, . . . , cVi〉, there
would be V1×V2×V3× . . . ×Vn logical sequences generated
by one test path. That is the combination explosion. The tree
in Fig. 11 shows the logical relationship among test path,
transitions and sub-conditions.

Fig. 11. Logical relationship among test path, transitions and sub-conditions

So the idea of combinatorial testing was used in this paper.
What is different is that the regular combinatorial testing cov-
ers the combination of different values of different parameters
in the system. However, the combinatorial test in this article
is a combination of the logical conditions that trigger a series
of transitions. This article used the 2-way coverage of the
combinatorial test, which means that for any two signal events
of the test path, the generated logical sequences can cover the
combination of all the sub-conditions of them two.

For combinatorial testing, the most critical part is to gen-
erate the covering array. In this paper, we used the AETG
algorithm, a 2-way combinatorial testing method. For example,
shown in Fig. 11, the test path has 3 transitions, and the con-
dition of trigger event on each transition is decomposed into
3 sub-conditions. The 2-way covering array of this example is
shown in Table II. 10 combinations of sub-conditions can sat-
isfy the 2-way coverage for 3 transitions, while 3×3×3 = 27
combinations are needed if all combinations of sub-conditions
are covered. The sequence of sub-conditions in each row of
the table is a logical sequence.

The AETG algorithm is a heuristic method for generating
a covering array [28]. Assume that we have a test path with
k transitions and that the i-th transition has ci different sub-
conditions. Assume that we have already selected r logical
sequences. We select the (r + 1)-th logical sequence by first
generating M different candidate logical sequences and then
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TABLE II
THE COVERING ARRAY OF THE EXAMPLE SHOWN IN FIG.11

t1 t2 t3
c11 c21 c32
c11 c22 c32
c11 c23 c31
c12 c21 c33
c12 c22 c31
c12 c23 c32
c13 c21 c31
c13 c22 c33
c13 c23 c32
c11 c23 c33

choosing one that covers the most new pairs. Each candidate
logical sequence is selected by the following greedy algorithm:

1) Choose a transition f and a sub-condition l for f such
that l appears in the greatest number of uncovered pairs.

2) Let f1 = f . Then choose a random order for the
remaining transitions. Then, we have an order for all k
transitions f1, f2, . . . , fk.

3) Assume that sub-conditions have been selected for transi-
tions f1, . . . , fj . For 1 ≤ i ≤ j, let the selected sub-condition
for fi be called vi. Then, choose a sub-condition vj+1 for
fj+1 as follows.

For each possible sub-condition v for fj+1, find the number
of new pairs in the set of pairs {fj+1 = v and fi = vi for
1 ≤ i ≤ j}. Then, let vj+1 be one of the values that appeared
in the greatest number of new pairs.

The logical sequences generated can cover all the combi-
nation of different logical sub-conditions for the signal events
on any two transitions of the spacecraft.

E. Logical sequences generating

Subsections A-B described the methods of modelling space-
craft and preprocessing of the model, subsection C illustrated
the method of generating test paths from the model, and sub-
section D described how to generate logical sequences from
one test path. This section will show the method to generate
test sequences from a logical sequence, the concretization
method.

Lex is a lexical analyzer generator [29] and is commonly
used with the yacc [30] parser generator. Ply is a parsing tool
written purely in Python. PLY tool was used to analyze each
condition on the logical sequence in this work. Combining the
type and value range of the parameter in each sub-condition,
we generated a specific value for each variable automatically
using the program.

Then a test inputs sequence was generated from the logical
sequence by generating specific values for every parameter in
the logical sequence.A test input sequence is also called a test
scene for the spacecraft.

Plenty of test scenes for the spacecraft can be generated
from a logical sequence, and how these test scenes are
distributed is also important.

According to ART, the generated test cases should be
distributed evenly in the high-dimensional input domain to

improve the coverage of defects as much as possible. For the
spacecraft, the generated test scenes should be distributed as
evenly as possible in the space formed by logical conditions.

Fixed Sized Candidate Set Art (FSCS-ART) algorithm is a
classical distance-based ART (D-ART) algorithm [31].

The steps of the algorithm are as follows: Firstly, randomly
generate a test case in the input domain, put it into the test
case set E.

And then randomly generate a candidate set with a fixed
number test case C = {c1, c2, . . . , ck},

Finally, select a test case from candidate set C which has
the largest distance from set E, and add this test case into
E = {e1, e2, . . . , eq}.

Repeat the above process for generating the following test
case until enough test cases are generated in E.

The distance between the candidate test case ci(1 ≤ i ≤ k)
and the set E is defined as the minimum of distances between
test case ej(1 ≤ j ≤ q) and ci.

For spacecraft, each test scene can be viewed as a vector.
Each component of the scene vector is a value of a variable.
The distance vector of two test scenes is the difference between
two scene vectors. Each component of the distance vector is
the difference of two values of the variable in two test scenes.
Because some variables of spacecraft are discrete values, while
others are continuous, the definition of the difference of values
was given.

For a discrete variable a, ∆a is the difference of its two
values a1 and a2,

∆a =

{
1, a1 6= a2

0, a1 = a2

A continuous variable b has two values b1 and b2, and they
need normalization in value before calculating distances.

b′1 =
b1 − bmin

bmax − bmin
, b′2 =

b2 − bmin

bmax − bmin

where bmin and bmax are the minimum and maximum of
variable b. ∆b is the difference of its two values b1 and b2.

∆b = b′1 − b′2
However, when testing spacecraft, empirical values of vari-

ables are sometimes important. For a given logical condition,
an experienced tester could give a classical value be that
satisfies the logical condition. Often the values of the variables
that trigger errors are more concentrated around the classical
value.

So the goal is to generate test scenes that are as evenly
distributed as possible, and for variables that have experience
values provided by experts, we want the values to be more
concentrated around the experience values. This variable was
mapped again after normalization. Considering the sigmoid
function

f(x) =
1

1 + e−Kx
,K ≥ 1

The f(x) is a nonlinear function that maps the real numbers
to the range (0, 1). When f(x1), f(x2), . . . , f(xn) are evenly
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distributed in the range (0, 1), x1, x2, . . . , xn are distributed
more around the value 0. This phenomenon will be more
obvious when K increases.

For the spacecraft, the normalization of the empirical value
is that

b′e =
be − bmin

bmax − bmin

Considering g(x) = f(x − b′e), the difference of its two
values b1 and b2 was modified to ∆b = g(b′2)− g(b′1).

According to the above definition of the difference, the
difference of different test scenes under the same logical
sequence can be measured.

In a word, we non-linearly mapped the vectors representing
the test scenes of the spacecraft to a ‘twisted’ space, and the
distance between the test scenes on this twisted space was
used to represent the difference of the test scenes. We used
the ART algorithm based on this distance. Under the premise
of satisfying the logical sequence, the set of generated test
scenes can be more ‘evenly’ distributed in space, making it
easier to find the errors of spacecraft software.

IV. CASE STUDY

Automatic tests generator that apply the above methods was
implemented using a Python program. This section will show
the practical result of the work and conduct a simple case
study.

The results we generated were stored hierarchically in a
XML document according to a certain structure. The first level
is different test paths of the spacecraft. Under each test path,
multiple logical sequences were stored, and under each logical
sequence, multiple test scenes were stored. Each test scene
consists of a series of test cases, and a test case contains an
input and the expected output. Fig.12 shows a part of the XML
document automatically generated by program.

Although Fig.12 only shows a part of the result, it contains
a complete test sequence with 13 test cases.

Test cases need to be executed in order. If the input of a
test case is empty, it means that there is no need to give any
input for the spacecraft at this time, and the spacecraft will
complete some actions autonomously. When the test case’s
input is fed to the spacecraft controller software, we should
compare the actual output of the spacecraft with the expected
output automatically generated. If the two are consistent, the
testing passes on this test case, and the next test case will
be executed. In a test sequence, if there is any inconsistency
between the expected output and the actual output, the test
fails.

V. CONTRIBUTIONS

The work of this paper is based on industrial practice, and
the paper presents an automatic process to generate test cases
for the controller software of spacecraft. The test cases are
generated from the model of testing requirements.

The contributions of this paper are as follows:

Fig. 12. A part of the result

1) An automatic process to generate test cases for spacecraft
is proposed and implemented. It is a model-based method
combining the combinatorial testing and adaptive random
testing.

2) A metric for the difference of test scenes is proposed.
According to the metric, an FSCS-ART method based on
non-uniform distance is proposed to generate test scenes
which are easier to cover errors of the spacecraft.

VI. FUTURE WORK

The main purpose of the work in this paper is to generate
test scenes for spacecraft controller software that fully cover
the test requirements, that is, to generate test cases for the
spacecraft controller software offline when only the test re-
quirements are known.

The disadvantage is that test scenes have not been run
to verify their validity. Soon, we will continue to study the
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validity of test cases and use the dynamic random testing [32]
method to select and execute test cases online.
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