
A Coverage-Guided Fuzzing Framework based on  

Genetic Algorithm for Neural Networks 

 
                                             Gaolei Yi                                                                          Xiaoyu Yang                       

               School of Reliability and Systems Engineering                  China North Vehicle Research Institude 

              Beihang University                                                                 Beijing, China 

             Beijing, China                                                                15210280054@163.com 

                                  ygl666@ buaa.edu.cn                                                               

 

                                            Pu Huang                                                                           Yichen Wang 

               School of Reliability and Systems Engineering                 School of Reliability and Systems Engineering 

                                    Beihang University                                                               Beihang University  

            Beijing, China                                                                       Beijing, China 

                                 p-huang@foxmail.com                                                       wangyichen@buaa.edu.cn 

 

 
Abstract—Due to the inherent difference between neural 

network and traditional software, it is very difficult to test it. At 

present, the use of fuzzing methods may be an effective 

exploration direction. We choose coverage-guided fuzzing as a 

method to test neural networks, and use neuron coverage as a 

coverage metric during execution. The effectiveness of neuron 

coverage will be demonstrated through experiments. On this 

basis, we designed a genetic algorithm-based fuzzing framework 

for neural networks, attempting to achieve greater coverage in 

a shorter time. And through the method of experimental 

comparison, the test efficiency of the framework is verified. 

Keywords: neural network;  fuzzing;  genetic algorithm 

I.  INTRODUCTION 

With the development of related technologies in the field 
of neural network (NN), deep learning (DL) technology has 
been developed by leaps and bounds, and has been widely 
used in many fields such as computer vision and natural 
language processing. 

Deep learning technology has gradually been applied to 
safety-critical areas, such as autonomous driving and assisted 
medical care. However, research in recent years has also 
shown that the training process of artificial intelligence 
technology is very susceptible to disturbances and may fail 
under relatively small adversarial interference. Although it is 
possible for learning algorithms to obtain generalization 
capabilities from data, their uncertainty has caused people to 
worry about their applications in safety-critical fields such as 
autonomous driving. Because of an input disturbance that 
humans cannot recognize, the learning algorithm may react in 
the opposite direction. 

The whole life cycle of a machine learning system 
including the process of machine learning testing includes: 
obtaining a preliminary model from historical data, and 
conducting off-line testing (such as cross validation) on the 
model before the actual deployment of the system to ensure 
that the model meets the required requirements. After the 
system is formally deployed, the model starts to perform tasks 
such as prediction and decision-making. In this process, it 

generates new data that can be analyzed through online testing 
to evaluate how the current model affects user behavior [15]. 
Compared with online testing, offline testing has some 
limitations, but offline testing is essential for the initial 
evaluation of the system. In our current research, the neural 
network oriented testing we discussed mainly refers to offline 
testing, and our experimental research is also the category of 
offline testing. 

The defect that causes the current behavior of the machine 
learning system to be inconsistent with the expected behavior 
is called a machine learning defect, and the activity of 
detecting machine learning defects is called a machine 
learning test. However, machine learning systems and 
traditional software systems are quite different in principle 
and structure, and machine learning testing faces many 
challenges. On the one hand, machine learning uses data-
driven modeling to complete prediction or decision-making 
tasks. This data-driven modeling makes the system behavior 
change as the training data changes; on the other hand, the 
statistical nature of the model makes the output of the system 
uncertain. It is difficult to find test predictions. In addition, a 
machine learning system usually includes data (training set, 
verification set, test set), learning program (code written by 
developers to build and verify the model), implementation 
framework (code library and platform for building machine 
learning model). The effect is a composite effect, and it is 
unreasonable to split the system into multiple components to 
test separately. 

The common practice of existing deep learning testing is 
to collect as much real data as possible and manually label it, 
or to generate a large amount of simulation data. But this 
method can only cover a small part of the real situation, and 
pay more attention to the coverage of the application situation, 
rather than paying attention to whether the test data, fed to the 
system, can cover most of the system logic; secondly, the 
method of manually labeling the data is time-consuming and 
laborious. Our experience with traditional software shows that 
it is difficult to build robust security critical systems only by 
using manual test cases. Considering the above reasons, we 
hope to use a method which is good at generating new test data 

352

2021 8th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/21/$31.00 ©2021 IEEE
DOI 10.1109/DSA52907.2021.00054



and does not need to label the data manually. After years of 
development, fuzzy testing has become one of the main 
methods to generate test data and test force. The strategy of 
generating test data is divided into generation based and 
mutation based. The fuzzy test based on generation needs to 
generate new input according to the rules and standards of 
system input. The fuzzy test based on variation generates new 
test data on the basis of existing data according to the variation 
rules. The difference between the new data and the original 
data is strictly limited in a certain range. In theory, the quality 
of test data generated by the former is higher than that of the 
latter, but its disadvantage is poor applicability. Before 
generating test data, we need to have a comprehensive and 
thorough understanding of the rules and standards of the 
system, so when facing different objects under test, we need 
to redesign a set of methods to generate test data. The latter 
only needs to adjust the mutation strategy when facing new 
test objects. Secondly, due to the similarity between the 
generated data and the original data, the label of the test data 
generated by the variation based fuzzy test will not be changed, 
so the manual annotation of the data is omitted. Based on the 
above analysis and the study of other related research, we 
finally choose the fuzzy test method based on variation. 

In our research, we hope to learn from the structural 
coverage in traditional software testing to ensure the adequacy 
of the proposed testing method. Based on the above problems, 
in this article we use coverage-guided fuzzing (CGF) to 
generate new test data on the basis of existing data. On the one 
hand, we hope to cover extreme cases that rarely occur in real 
situations, and on the other hand newly generated test data is 
labeled, which eliminates the tedious work of manually 
labeling the data. 

Using the CGF method, we need to select an effective 
coverage-metric. After investigation and combining our 
requirements for easy calculation of the selected coverage 
metrics, we finally selected neuron coverage as the coverage 
metric, and according to the principle of CGF, algorithm 
needs to be designed to achieve higher coverage. When 
analyzing the execution process of CGF, we believe that the 
entire process from the selection of the initial seed to the 
maintenance of the seed corpus to achieve maximum coverage 
is very similar to the implementation process of genetic 
algorithms. Genetic algorithm is a method of selecting the 
optimal solution through continuous iteration in the solution 
space, and it is often used in academia and industry to solve 
optimization problems. 

The contributions of this article include: 
⚫ Discuss the effectiveness of neuron coverage as a 

measure of deep neural network(DNN) test adequacy. 
⚫ A CGF framework is proposed (shown in  
⚫ Figure 1), which uses CGF combined with genetic 

algorithm to maximize the coverage of neurons by 
input use cases. 

 
 

Figure 1. A CGF framework based on genetic algorithm 

 
The structure of this paper is as follows: The second 

section introduces the possibility of CGF for DNN testing and 
the selection of DNN test coverage metrics. The third section 
introduces the CGF framework based on genetic algorithms 
for neural networks. The fourth section includes our 
experiments and comparisons. As a result, the final 
conclusions and prospects for future research directions are 
made. 

II. BACKGROUND 

This section gives the background basis for our research, 
including CGF for traditional software, and then discusses the 
feasibility of CGF applied to neural networks, and the 
selection of coverage metrics in the process of implementing 
CGF. 

A. Fuzzing-guided Fuzzing 

Fuzzing is a traditional automated testing technology that 
generates random data as program input to detect program 
crashes, memory leaks, etc. Due to its good scalability and 
effectiveness, it has been successfully applied to system 
security and vulnerability detection. [1]. As a method of 
fuzzing, CGF traditionally uses code lines and branches as 
coverage metrics, and uses code coverage metrics as feedback 
to maintain a balance between test effectiveness and test 
efficiency [2]. Many advanced CGF tools [4,5,6] have been 
widely used and proven effective. 

At present, there have been many studies applying the 
CGF method to the test of deep learning [8, 9, 10]. They use 
different methods to achieve coverage improvement. On the 
basis of these studies, we believe that despite the huge 
differences between traditional programs and DNN, the 
success of CGF on the former still makes us think that using 
CGF to test the latter may have great potential. And some 
correspondences can be found in the category of CGF between 
traditional software and DNN. For example, the traditional 
tested program corresponds to DNN, the mutated seeds 
corresponds to the input of DNN, and the coverage feedback 
may also correspond to a kind of coverage of DNN. Of course, 
considering the uniqueness of DNN, its effective coverage 

353



index is still worth discussing. This article also explores the 
effectiveness of neuron coverage. 

B. Coverage metrics for DNN 

A test adequacy metric, or a test coverage metric, is used 
to examine the adequacy of a set of test cases for testing the 
software under test under certain conditions [7]. Coverage in 
traditional software testing is related to software requirements 
and code coverage (such as statements, branches, conditions, 
etc.), but obviously these coverage criteria are not feasible in 
DNN testing, so we need to propose a new set of coverage 
criteria for DNN. 

Neuron coverage is the first coverage index proposed for 
neural networks[11], which is defined as the proportion of 
activated neurons in the neural network. Neuron coverage has 
been applied to the study of DeepXplore. Attack resistant 
testing is a common deep learning testing method, but the 
change of the existing input is only limited to very small 
changes. If the change is too large, it needs to be manually 
annotated to determine the output of the system. Secondly, the 
test based on adversarial attack also does not consider whether 
the generated attack data can cover most of the system logic 
after entering the system. Therefore, the first contribution of 
DeepXplore is to propose a new test completeness measure 
neuron coverage for deep learning system testing. Deep 
Xplore is a deep learning system testing technology based on 
test case generation. The generated test input can not only 
expand the training set and retrain to improve the accuracy and 
robustness, but also detect the possible data pollution attacks 
in the training set. The specific method of detecting 
contaminated data is to train DNN for clean data set and 
contaminated data set respectively, and then generate new test 
input for these two DNNS with DeepXplore method on clean 
data set. The author thinks that the test input generated in this 
way is likely to be very close to the contaminated data. If we 
compare the similarity of some samples, we can find out the 
wrong labeled data in the contaminated data set. 

On this basis, other coverage metrics including k-
multisection neuron coverage[12] and ss-coverage [7] have 
been proposed. The author of deepGauge thinks that the 
decision-making behavior of DNN model is mainly 
determined by the connection weight between neurons and the 
activation function on neurons. The new test adequacy 
criterion can not only rely on the decision output of DL system, 
but should monitor and measure the neuron activity (nonlinear 
activation) and network connection (connection weight) from 
different granularity levels. Moreover, the neuron coverage 
proposed by deepxplore is more inclined to test the main 
functional areas, and rarely covers the extreme cases. How to 
cover more extreme cases is the key problem to be considered 
in the future DL test method design. Therefore, the author 
proposes a series of test criteria for multi-level and multi 
granularity coverage. 

Through the study of multiple coverage metrics, we 
believe that other coverage metrics are improved on the basis 
of neuron coverage, and neuron coverage can be regarded as 
the basis. At the same time, there is a similar view in the 
standard document ISO / IEC TR 29119-11 [17], that is, if 

other coverage metrics are fully achieved, the neuron 
coverage will be automatically achieved. 

In addition, because the machine learning system in the 
real use of time is relatively short, there is no complete test 
system for machine learning system, many problems are still 
worth discussing. For example, whether the white-box 
coverage metric of neural network is really effective or not is 
controversial in the academic circles. In addition to the above-
mentioned studies, there are also related studies that question 
the coverage metrics such as neuron coverage [18] [19]. 
Therefore, we think that since we want to choose the neuron 
coverage as the coverage metric, we need to preliminarily 
verify the effectiveness of the neuron coverage on the tested 
neural network. 

Here, we think that to discuss the effectiveness of the 
coverage metric, we should start from the basic coverage 
metric, just like the statement coverage in traditional software 
testing. At the same time, in order to realize the operation of 
the whole framework as soon as possible, we choose the 
neuron coverage as the DNN test coverage metric in this paper. 
We hope to discuss the relationship between the neuron 
coverage of test cases and the correct rate of prediction results. 
Because we traditionally believe that the higher the coverage 
achieved in the test process, the greater the possibility of 
finding problems. If this conclusion is valid for neural network, 
then we can achieve a better realization that when testing the 
neural network high neuron coverage is the goal of the test 
method, which also conforms to the principle of CGF. It only 
needs to achieve a higher neuron coverage to show that the 
test of the neural network is adequate. 

 

III. METHODOLOGY 

In this section, we will introduce the proposed CGF 
framework. Firstly, we will give an overview of the entire 
framework, and then describe key components in detail. 

A. CGF Framwork 

In this paper, based on the research of coverage guided 
fuzzing of traditional computer programs, we hope to propose 
a neural network oriented fuzzy testing framework based on 
genetic algorithm, which is universal and extensible when 
facing different systems under test. We introduce genetic 
algorithm to optimize the whole CGF process, and improve 
the efficiency of this method based on neuron coverage and 
seed selection strategy. 

The CGF framework, as shown in Figure 1, starts with 
selecting seeds from initial seeds to generate a seed corpus 
according to the selection strategy, which corresponds to the 
initial population selection in the genetic algorithm. This 
strategy assigns a probability to each seed based on the 
number of times each seed has been selected and whether a 
new coverage was exercised in the previous iteration. When 
selecting the seed, the seed with the higher probability is 
preferentially selected according to the probability. The 
detailed probability calculation method in this process will be 
described in III.B. 

After obtaining the seed corpus, that is, the population in 
the genetic algorithm, the seed is not the real input. The 
mutator needs to mutate the seeds according to the mutation 

354



strategy, and obtain the new input as the input of the target 
program to make the program run. The mutation strategy can 
be flipping a pixel of the input image, or it can be a limited 
modification of the seeds according to a certain constraint. 
The mutation strategy will be described in detail in III.C. 

The mutated seed will eventually be fed to the neural 
network. During the execution of the neural network, we will 
monitor the coverage of neurons and the output results. In this 
framework, two parts will be obtained from the neural 
network, including a neuron coverage sequence, from which 
the neuron coverage and the output of the neural network can 
be calculated. 

After calculating the coverage, which is corresponded to 
the fitness function in genetic algorithm, we can mark the 
interesting seeds which exercises new coverage and add them 
to the seed corpus. The above process will continue to iterate 
until the stop condition is met. According to the above 
description, it is not difficult to find that the whole process of 
the framework is the same as that of CGF. The difference lies 
in the formulation of seed selection strategy and the overall 
planning of the testing process by using genetic algorithm, 
selecting the appropriate seed mutation strategy to mutate the 
seeds, and marking the seeds of interest. 

The key component in this iterative process is seed 
selection strategy and mutation strategy. We regard the entire 
iterative process as an iterative process of a genetic algorithm, 
and the ultimate goal is to find the optimal solution to 
maximize coverage. 

 

B. Seed Selecting Strategy 

In each iteration of CGF, a fixed number of seeds must be 
selected from the seed corpus (translation note) as the original 
input before mutation. In order to achieve high coverage faster, 
we need to sort the seeds in the queue. The seeds that are more 
likely to exercise a new coverage rate (translation attention) 
have a higher probability of being selected. Therefore, the 
probability of our seed being selected meets the following 
characteristics: 

1. The probability value can be guaranteed to be 
between (0,1); 

2. The more times a seed is selected, the lower the 
probability of being selected again. 

Therefore, we believe that the following function can meet 
our requirements: 

 

          𝑃1(x) =
1

1+𝑒𝑎𝑥+𝑏  , 𝑎 > 0, 𝑥 ∈ [0, +∞)                (1) 

 
where x is the number of times the seed has been selected. 

On the other hand, in the middle and late stages of the test, 
the new neuron coverage generated by the test input will 
become very small, and it is these very few new neuron 
coverages that are extremely precious to our test, because 
these new coverages increase in the rate means that the 
possibility of finding erroneous behaviors is greater. So we 
designed another part of the probability function for each seed: 

 

𝑃2(𝑁𝐶𝑜𝑣𝑛𝑒𝑤 , 𝐶𝑖𝑟𝑐𝑙𝑒, 𝑇𝑜𝑡𝑎𝑙) = √𝑁𝐶𝑜𝑣𝑛𝑒𝑤

1+
𝐶𝑖𝑟𝑐𝑙𝑒4

𝑇𝑜𝑡𝑎𝑙3
       (2) 

 

where 𝑁𝐶𝑜𝑣𝑛𝑒𝑤 is the new coverage that appeared in the last 

iteration test, Circle is the current iteration number, and Total 
is the target iteration number. In this function, when the Circle 
is small, it is similar to a linear function, which can well reflect 
the discrimination of the new coverage index; when the Circle 
is large, this function can increase the impact of the small new 
coverage on the seed probability. 

In the end, the probability of each seed being selected is: 
 

P = (1 −
𝐶𝑖𝑟𝑐𝑙𝑒

𝑇𝑜𝑡𝑎𝑙
) × 𝑃1 +

𝐶𝑖𝑟𝑐𝑙𝑒

𝑇𝑜𝑡𝑎𝑙
× 𝑃2                 (3) 

 
As the test progresses, the proportion of P_2 will be higher, 

that is, the seeds that exercise new coverage are more likely to 
be selected. In addition, in the process of maintaining the seed 
corpus, there is a certain probability that seeds that have never 
been selected from the initial seeds are selected to improve the 
mutation efficiency in the genetic algorithm. 

In the process of mutating the seed image, we hope that 
the mutated image has no obvious difference in the eyes of 
humans. This is also the real test case generated by the fuzzer 
in the fuzzing test. Traditional image blur operations include 
random changes in pixel values, image rotation, and changes 
in image brightness. However, some of these methods, such 
as image rotation, cannot meet our requirement that the 
mutated image is not significantly different from the human 
eye. So we finally choose two methods as image mutation 
methods: Gaussian noise with configurable mean and standard 
deviation and inversion of random pixel value. 

C. Mutation Strategy 

In the process of mutating the seed image, we hope that 
the mutated image has no obvious difference in the eyes of 
humans. This is also the real test case generated by the fuzzer 
in the fuzzing test. Traditional image blur operations include 
random changes in pixel values, image rotation, and changes 
in image brightness. However, some of these methods, such 
as image rotation, cannot meet our requirement that the 
mutated image is not significantly different from the human 
eye, so we finally chose to add Gaussian noise with 
configurable mean and standard deviation and random pixel 
values. The inversion of the two methods is used as the means 
of image mutation. Take an image in the MNIST dataset as an 
example 

Gaussian noise, as the name suggests, is a kind of noise 
that obeys Gaussian distribution. Adding Gaussian noise to 
the image will make the probability density function of the 
new image noise obey Gaussian distribution. In the field of 
image processing, Gaussian noise belongs to additive noise, 
and new image is the superposition of noise and original 
image. 

Pixel inversion is generally applied to gray image. Each 
pixel of gray image is represented by a value between (0, 255). 
255 represents white and 0 represents black. Pixel flipping is 
to transform the selected pixels so that the values before and 
after the transformation are 127.5 symmetrical with respect to 

355



the points on the number axis, which is called "black and 
white inversion".  

The result after being mutated by the mutator according to 
the mutation strategy is shown in Figure 2. In the process of 
research, we find that the same image, which is obtained by 
adding Gaussian noise and pixel inversion, is more likely to 
lead to the error behavior of the tested neural network. So we 
set the probability of pixel inversion higher: for each mutation, 
there are 30% and 50% probability of Gaussian blur and pixel 
inversion separately, and another 20% probability of both 
Gaussian blur and pixel inversion. 

 

 

 

IV. EXPERIMENTS 

In response to the above content, we have raised two 
corresponding questions, which need to be demonstrated 
experimentally. 

RQ1: Is neuron coverage effective as a coverage metric of 
neural network test adequacy? 

RQ2: Compared with the strategies in other papers, does 
the seed selection strategy we designed have an advantage in 
improving coverage? 

A. Dataset and CNN Models 

We chose the commonly used public data set MNIST as 
the experimental data set. MNIST is a data set for handwritten 
digital image recognition, including 60,000 training data and 
10,000 test data, a total of 70,000 images, divided into 10 
categories from 0 to 9. Each MNIST image is single-channel 
and the size is 28×28×1. We trained different CNN models as 
subject models on the MNIST data set. The training process 
of each model is carried out under the same controllable 
conditions, such as training data, number of training iterations, 
etc. 

B. Effectiveness of Neuron Coverage  

We have chosen neuron coverage as the coverage metric, 
which means that the hypothesis is that the higher the neuron 
coverage reached, the more incorrect prediction results of the 
CNN model will be. When the coverage is high enough, the 
test will be adequate. In order to verify this hypothesis, a 
response experiment needs to be designed to prove it. 

1) Experiment Setup 
In order to answer RQ1, we feed test cases to different 

CNNs, record the neuron coverage and the number of false 
predictions during the test, and then analyze the correlation 
between the neuron coverage and the number of false 
predictions based on statistical data. 

2) Objective of the Experiment 

Experiments are designed to prove the effectiveness of 
selecting neuron coverage as the coverage index, that is, to 
verify the correlation between the coverage and the number of 
erroneous behaviors. 

3) Experimental Hypothesis 
The purpose of this experiment is to verify the 

effectiveness of using neuron coverage as an evaluation index 
of fuzzy test in subsequent experiments. Therefore, it is 
necessary to construct and verify the relationship between 
neuron coverage and an index that directly reflects the 
effectiveness of fuzzy test. The most direct indicator to reflect 
the effect of fuzzy test is the number of erroneous behaviors 
detected. Therefore, the hypothesis of this experiment is: in 
the same neural network, the neuron coverage index after the 
test run is positively correlated with the number of erroneous 
behaviors detected. 

4) Experimental Model and Experimental Data 
We choose MNIST as the experimental data set. MNIST 

is a data set for handwritten numeral image recognition, 
including 60000 training data and 10000 test data, a total of 
70000 images, divided into 10 categories from 0 to 9. Each 

MNIST image is a single channel with a size of 28×28×1. 

We train different CNN models as subject models on 
MNIST dataset. The training process of each model is carried 
out under the same controllable conditions, such as training 
data, training iterations and so on. 

5) Experimental Variables 
The independent variable of this experiment is the 

coverage rate of neurons, and the dependent variable is the 
number of error behaviors detected. 

6) Experiment Results 
In the test process of the first CNN, we set the number of 

each test set to be the same. The statistical results are shown 
in Figure 3. It can be seen that when the coverage of the test 
set increases, the number of erroneous results predicted by 
CNN increases. At this time, the correlation coefficient of the 
two variables is 0.656, and the significance p-value is 0.0392, 
indicating that the two have a certain positive correlation. 

 

 
Figure 3. The relationship between neuron coverage and the number of 

erroneous behaviors on CNN-1 

 

Figure 2．The original picture and the picture after adding Gaussian 

noise and pixel inversion respectively 

356



 

Figure 4. The relationship between neuron coverage and the number of 

erroneous behaviors on CNN-2 

 
In the second CNN test process, we chose different size 

test sets. The statistical results are shown in Figure 4. It can be 
seen that when the coverage rate increases, the number of 
prediction erroneous behaviors increases in a manner that 
approximates exponential growth. After taking the logarithm 
to do a linear fitting, the correlation coefficient at this time is 
0.950, and the significance p-value is 2.18 × 10−6 ≪ 0.01. 

Based on the above analysis of the statistical results, it can 
be concluded that increasing the coverage of neurons to a 
certain extent can help us find more potential erroneous 
behaviors in the deep learning model. 

C. Comparison of test efficiency of CGF framework 

1) Objective of the Experiment 
Through comparative experiments, the efficiency of the 

proposed seed selection strategy based on Genetic Algorithm 
in coverage will be analyzed. 

2) Experimental Hypothesis 
In the same test environment, the performance of our 

optimization strategy is better. That is, in the same time, the 
coverage can be higher. 

3) Experimental Environment 
The experimental environment is the neural network 

construction, coverage calculation principle and image 
mutation mode described in the previous sections. It is worth 
mentioning the construction of the new coverage index 
calculation module. 

The function of the new coverage calculation module, as 
the name suggests, is to calculate the new coverage generated 
after the image is input into the neural network. Here we want 
to define the calculation method of the new coverage rate: the 
new coverage rate in this paper refers to the proportion of the 
number of neurons not covered in the current round to the 
number of neurons not covered in the previous round, as 
shown in the following formula: 

NewNCov(net, n) =
𝑛𝑒𝑡.𝑁𝑒𝑤𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑(𝑛)

𝑛𝑒𝑡.𝑁𝑜𝑡𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑(𝑛−1)
         (4) 

where n is the number of iterations. 

 

4) Experiment Setup 
In order to answer RQ2, we designed an experiment to 

compare the proposed seed selection strategy with random 
selection and the seed selection strategy proposed in other 
papers [8, 9], and compare the neuron coverage achieved by 
the four after the same number of test iterations. 

5) Experiment Results 

 

 
Figure 5. Comparison of the efficiency of seed selection strategies 

 
As shown in Figure 5, DP_RN is an improved method 

based on the seed selection strategy proposed by DeepHunter. 
This method uses random selection in the early stage of the 
test, because we find that random selection has great 
advantages in the early stage of the test. Based on this finding, 
in our proposed seed selection strategy, a random selection 
method was also used in the early stage to improve efficiency. 
It can be seen from the figure that after the first few iterations, 
the neuron coverage achieved by our proposed method is 
relatively higher. 
 

V. CONCLUSION AND FUTURE WORKS 

Deep learning has achieved great success in the past 
decade and has become the main driving force driving the 
development of many new intelligent applications. However, 
the quality assurance technology of deep learning-based 
systems is still in its early stages and requires a very scalable 
test framework. In this article, we propose a genetic 
algorithm-based fuzz testing framework for neural networks, 
select neuron coverage as a measure of test adequacy, and 
combine the advantages of genetic algorithm in optimization 
calculations, hoping to achieve it in the shortest time Higher 
neuron coverage. By designing experimental verification 
methods, we explained the effectiveness of neuron coverage 
as a measure of test adequacy. On this basis, we have 
improved our method based on the experimental results and 
further improved its efficiency by comparing experiments 
with other strategies. 

It is worth noting that although we use the experimental 
method to verify the effectiveness of neuron coverage, we 
think it can only show that there is a correlation between 
neuron coverage and neural network error behavior, rather 

357



than causality. In view of the fact that there is still no unified 
understanding of the white box coverage index of neural 
network, and the neural network technology will encounter 
more challenges in the development process, we will also 
expand our proposed framework in the future work combined 
with the existing coverage index. 

In future work, we will make further improvements to the 
proposed fuzzing framework, try to use other improved 
coverage metrics coverage criteria, try other algorithms other 
than genetic algorithms to further improve the test efficiency, 
and will use more complex data sets such as ImageNet in 
Experiments. At the same time, we hope to further explore the 
specific representation of the input that causes the wrong 
prediction result in the neural network, because we think this 
will help us to further improve the test method. 

REFERENCES 

[1] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz,and 
Shin Yoo. The oracle problem in software testing: A survey.IEEE 
transactions on software engineering, 41(5):507–525, 2015  

[2] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and 
Meredith Whittaker. Announcing oss-fuzz: Continuous fuzzing for 
open source software. Google Testing Blog, 2016. 

[3] Augustus Odena and Ian Goodfellow. TensorFuzz: Debugging 
Neural Networks with Coverage-Guided Fuzzing. arXiv preprint 
arXiv:1807.10875, 2018. 

[4] “American Fuzzy Lop,” 2018. [Online]. Available: 
http://lcamtuf.coredump.cx/afl/ 

[5] “libFuzzer,” 2018. [Online]. Available: 
https://llvm.org/docs/LibFuzzer.html 

[6] S. Rawat, V . Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, 
“Vuzzer: Applicationaware evolutionary fuzzing,” in Proceedings 
of the Network and Distributed System Security Symposium (NDSS), 
2017. 

[7] Y. Sun, X. Huang, and D. Kroening. Testing Deep Neural Networks. 
ArXiv e-prints, March 2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[8] Odena, A. and Goodfellow, I., “TensorFuzz: Debugging Neural 
Networks with Coverage-Guided Fuzzing”, arXiv e-prints, 2018. 

[9] Xie, X., “DeepHunter: Hunting Deep Neural Network Defects via 
Coverage-Guided Fuzzing”, arXiv e-prints, 2018. 

[10] Guo, J., Jiang, Y., Zhao, Y., Chen, Q., and Sun, J., “DLFuzz: 
Differential Fuzzing Testing of Deep Learning Systems”, arXiv e-
prints, 2018. 

[11] Pei K, Cao Y, Yang J, et al. Deepxplore: Automated whitebox testing 
of deep learning systems. In: Proc. of the 26th Symp. on Operating 
Systems Principles. ACM, 2017. 1−18. 

[12] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo 
Li, Chunyang Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and 
Yadong Wang. DeepGauge: Multi-granularity Testing Criteria for 
Deep Learning Systems. In Proceedings of the 33rd ACM/IEEE 
International Conference on Automated Software Engineering, ASE 
2018, pages 120–131, 2018. 

[13] Xiang Gao, Ripon K. Saha, Mukul R. Prasad, and Abhik 
Roychoudhury. 2020.Fuzz Testing based Data Augmentation to 
Improve Robustness of Deep Neural Networks. In 42nd International 
Conference on Software Engineering(ICSE ’20). 

[14] J. Guo, Y. Zhao, Y. Jiang and H. Song, "Coverage Guided Differential 
Adversarial Testing of Deep Learning Systems," in IEEE Transactions 
on Network Science and Engineering. doi: 
10.1109/TNSE.2020.2997359 

[15] J.M.Zhang, M.Harman, L.Ma and Y. Liu, "Machine Learning Testing: 
Survey, Landscapes and Horizons," in IEEE Transactions on Software 
Engineering, doi: 10.1109/TSE.2019.2962027. 

[16] Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas 
Stifter. Testing advanced driver assistance systems using 
multiobjective search and neural networks. In Proceedings of the 31st 
IEEE/ACM International Conference on Automated Software 
Engineering, pages 63–74. ACM, 2016.Zalewski, M (2017) American 
fuzzy lop. http://lcamtuf.coredump.cx/afl/.Accessed 25 Dec 2017. 

[17] ISO/IEC TR 29119-11:2020 Software and systems engineering — 
Software testing — Part 11: Guidelines on the testing of AI-based 
systems. 

[18] Harel F Y. Is Neuron Coverage a Meaningful Measure for Testing 
Deep Neural Networks?[J]. Ann Arbor, 1001: 48106-1346. 

[19] Dong Y, Zhang P, Wang J, et al. There is Limited Correlation between 
Coverage and Robustness for Deep Neural Networks[J]. arXiv preprint 
arXiv:1911.05904, 2019. 

 

 

 

 

 

 

358

https://llvm.org/docs/LibFuzzer.html

