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Abstract—Software defect prediction is a skill in software 

engineering that can increase program reliability. In the past, most 

defect prediction studies have been based on size and complexity 

metrics. In recent years, machine learning based predictive studies 

have been conducted. To build an accurate prediction model, 

choosing effective features remains critical. In this paper, we 

constructed a deep learning model called Defect Prediction via 

Self-Attention mechanism (DPSAM) to extract semantic features 

and predict defects automatically. We transferred programs into 

abstract syntax trees (ASTs) and encoded them into token vectors. 

With input features, we trained a self-attention mechanism to 

extract semantic features of programs and predict defects. We 

evaluated performance on 7 open source projects. In Within-

Project Defect Prediction (WPDP), DPSAM achieved 16.8% and 

14.4% performance improvement compared to state-of-the-art 

deep belief network (DBN)-based method and defect prediction via 

convolutional neural network (DP-CNN)-based method in F1 

score, respectively. Besides, in Cross-Project Defect Prediction 

(CPDP), DPSAM achieve 23% and 60% performance 

improvement in F1 score compared to DBN-based method and 

DP-CNN-based method. 

 

Keywords: Software engineering, Defect prediction, Deep learning, 

Convolutional Neural Network, Attention mechanism, Self-

Attention mechanism. 

 

I. INTRODUCTION 

In recent years, advances in science and technology has led 

to software development growing more complex and projects 

increasing in scale. In order to meet and ensure quality 

standards and complete schedules on time, an increasing 

number of methodologies have been developed for software 

engineering technology. Currently, a number of methods to 

enhance software quality exist. During the software 

development process, software testing is generally used to 

verify whether or not the developed software satisfies user’s or 

project’s requirements. Software failure data can be collected 

and recorded during testing and operational phases, and they are 

assumed to provide additional information about the failure 

process [1]. From the test results, project managers and 

engineers can then objectively make an assessment about the 

quality or the acceptability of the software. 

However, decreased project development time and a wide 

variety of program languages have increased the difficulty of 

testing. Therefore, assuring quality and reliability are not only 

necessary but also increase efficiency. Software defect 

prediction is a skill in software engineering which can add 

reliability to programs [2][3][4][5][6][7][8]. Practically, based 

on the results of early prediction of fault distribution, project 

managers are able to make required changes to the  

 

development approach; that is, managers can choose to revise 

schedules, reallocate testing resources. Additionally, developers 

may have to reevaluate the criteria used to determine which 

program modules or components should receive corrective 

actions and institute any needed changes. 

Software defect prediction identifies the modules that are 

defect prone and require extensive testing. For engineering 

programs, it can condense time, reduce overheads and 

wherewithal, and provide assurance quality of products. 

Therefore, a variety of methods have been developed. Most 

defect prediction studies are based on size and complexity 

metrics in the past. Many studies based on data fitting models 

or linear models which use different metrics to derive 

estimations are currently available. In recent years, with the 

development of machine learning, more and more machine 

learning based predictive studies that use regression models or 

classification models to predict software defects.  

Most machine learning based processes use features 

extracted from labeled historical defect data, including code 

features and process features. By using weighted algorithms 

and extracted features, the machine learning based methods 

produce features and put generated features into the machine 

learning classifier model to enhance performance. Today, deep 

learning skill has grown considerably in popularity and is 

applied widely in many research areas [9]. Already, many 

methods currently use deep learning to conduct feature 

generation [10][11][12][13]. Programs include not only 

structures but also syntaxes and semantics, which are hidden 

deeply in the source code [14]. Deep learning models can 

capture complicated non-linear features [15]. However, features 

generated from machine learning based processes are unable to 

obtain semantic features from programs. Deep learning models 

are used to perform feature generation, which in turn enhances 

reliability. Abstract syntax trees (ASTs) have well defined 

syntaxes from programs [16][17][18]. Therefore, deep learning 

models can be used with input token vectors extracted from the 

ASTs of programs to learn semantic features. 

There are two kinds of defect predictions: WPDP and CPDP 

[19][20]. Traditional defect prediction methods gain effective 

performance in WPDP. However, when training dataset and 

testing dataset are in different projects, namely CPDP, the 

performance is unsatisfactory. Using the features generated 

from deep learning methods can also overcome this problem. 

Currently, Attention mechanism is very popular and widely 

used in many fields, such as machine translation, speech 

recognition, image caption, and so on [21][22][23][24]. 

Compared with other deep learning models, attention 

mechanism can parallelize training in efficiency, reduce 
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training time, and achieve optimal performance with minimum 

training cost. Consequently, we used attention mechanism to 

generate more reliable features and proposed an approach 

called DPSAM to perform defect prediction.   

In addition, to produce the proper inputs for deep learning 

model, we had to process ASTs from programs. Therefore, we 

used word embedding to exploit the program context. Word 

embedding maps each AST token into a numerical vector, 

which is trained regarding the context of each token. After 

finishing pre-process to target programs, the generated features 

are put into the machine learning classifier model, such as 

Logistic Regression or Naive Bayes, to predict programs as 

buggy or clean. However, connecting the classifier and tuning 

classifier model increases the time consumed in defect 

prediction process. Therefore, our proposed approach generates 

features from programs and predicts defects automatically 

without connecting the machine learning classifier. In addition, 

this process is able to assess whether the connecting classifier 

is worth it or not and validate the trade-off between time 

consumption and performance. 

The contributions of our paper are as follows: 

⚫ We propose a deep learning based model, DPSAM, to 

generate features from programs in ASTs and predict 

buggy or clean from programs automatically. 

⚫ We leverage the semantic features learned automatically 

by Self-Attention mechanism to improve both WPDP and 

CPDP. 

⚫ Our evaluation results on 7 open source Java projects 

show that using Self-Attention mechanism to generate 

features improves both WPDP and CPDP. In WPDP, the 

performance of DPSAM performs as well as the state of 

the art deep belief network (DBN)-based and the defect 

prediction via convolutional neural network (DP-CNN) 

method in F1 score and accuracy. Furthermore, the results 

in CPDP demonstrate that the automatically learned 

features by DPSAM outperforms the state-of-the-art DP-

CNN method.  

The rest of this paper is organized as follows. In Section II, 

we provide a brief background on software defect prediction, 

including machine learning models, deep learning models, and 

Attention mechanism. Then, we present our proposed approach 

in Section III. In Section IV, we show the result of our 

experiment and some observations and discussions. Finally, 

some conclusions and future works are described in Section V. 

II. RELATED WORKS 

 Overview of Software Defect Prediction 

Software defect prediction, which is a skill in software 

engineering, can discover the regions of buggy code. In addition, 

it helps developers allocate their testing efforts by first checking 

potentially buggy code and saving testing time. Due to its 

importance, software defect prediction has been the focus of 

researchers for a long time. A number of software defect 

prediction methods have been published in the past. For 

example, many test case prioritization techniques aimed to 

schedule test cases in a manner that increased the rate of fault 

detection for regression testing. They usually prioritized test 

cases according to information acquired by analyzing the 

source code. Huang et al. [25] proposed a Modified Cost-

Cognizant Test Case Prioritization (MCCTCP) method based 

on the use of historical records. They gathered the historical 

records from the latest regression testing and then proposed a 

genetic algorithm to determine the most effective order. Their 

experiments showed that the MCCTCP method could 

effectively improve the effectiveness of cost-cognizant test case 

prioritization without analyzing the source code, even when test 

case costs and fault severities were uniform. 

Additionally, Huang et al. [26] also proposed a bounded 

generalized Pareto distribution (BGPD) model to investigate 

the fault distributions of open source software. Their proposed 

BGPD model could eliminate certain issues that occurred in the 

classical Pareto distribution model and exhibited impressive 

performance on modeling the distribution of software faults. 

Luan and Huang [27] once proposed a single change-point 2-

parameter generalized PD (SCP-2GPD) model with a very 

flexible structure and which could model a wide spectrum of 

software development environments. Their experimental 

results showed that the Pareto principle could be applied to 

describe the fault distribution of OSS, and their proposed SCP-

2GPD model can be used to depict various OSS fault 

distributions. 

However, most defect prediction studies before the 

development of machine learning were based on size and 

complexity metrics. A number of studies based on data fitting 

models or linear models used different metrics to arrive at 

estimations. However, an increasing number of machine 

learning based predictive studies using regression models or 

classification models to predict have emerged. In the past, most 

defect prediction methods used traditional hand-crafted features 

to make estimations. Traditional hand-crafted features are static 

code features or process features, including Halstead features-

based on the number of operators and operands, McCabe 

features-based on dependencies, CK features for object-

oriented programs, and so on [28][29][30]. Code metrics 

include LCOM, CBO, and other similar metrics. Process 

features contain the number of revisions, authors, past fixes, 

and so on. Halstead proposed a number of size metrics, which 

have been interpreted as complexity metrics, and used these as 

predictors of program defects [31]. Compton and Withrow of 

UNISYS derived many polynomial equations to optimize 

module sizes and discovered that small-size software 

components often had an extremely high fault density [32]. 

In machine learning, defect prediction techniques use 

features to train classifiers to predict defect. And there are 

various code areas, including method, file, and change. Our 

proposed approach is file-level defect prediction. File level 

means that each of the training instances or testing instances is 

a source code file. Machine learning based defect prediction 

process consists mainly of three parts. First, data needs to be 

split as training data and testing data. Then, the machine 

learning classifier needs to be trained with generated features 

from training programs for defect prediction. Finally, the target 

program needs to be entered into the pre-trained classifier to 

predict whether the program is buggy or clean. The entire 
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process of defect prediction is depicted in Fig.1. Hassan et al. 

[33] used the entropy of features from code change processes 

instead of code to predict defects and demonstrate that 

predictors based on change complexity models were better 

predictors of future faults in large software systems. 

Furthermore, Lee et al. [34] proposed 56 novel micro 

interaction metrics that leverage developers' interaction 

information stored in the Mylyn data to perform defect 

prediction. Their experimental results revealed that MIMs were 

able to improve defect classification and regression accuracy. 

 

 
Fig. 1. Process flow of the defect prediction 

 

There are two kinds of defect prediction: WPDP and CPDP. 

In WPDP, training data and testing data are in the same project. 

Conversely, in CPDP, training data and testing data are in the 

different project. Because the features of source projects and 

target projects often have different distributions, it remains 

challenging to attain good performance in CPDP [19][34]. Data 

are derived from the same project in WPDP. Wang et al. [35]  

proposed defect prediction models based on the C4.5 model to 

reduce the size of the decision tree model and increase 

performance by using two modules from Eclipse. Khoshgoftaar 

and Seliya [36] examined the performance of machine learning 

algorithms in regression tree types, including CART-LS, S-

PLUS, and CART-LAD on defect prediction by using 

telecommunications software system data which was 

programmed in PROTEL. Data were derived from the different 

project in CPDP. TCA made feature distributions in the source 

and target projects similar. And Nam et al. [37] proposed TCA+ 

optimized TCA’s normalization process to improve the 

performance of CPDP by using eight open-source projects, 

including projects of ReLink and projects of AEEEM, which 

are traditional hand-crafted features. Their experimental result 

showed that TCA+ improved cross-project prediction 

performance significantly. Turhan et al. [38] applied analogy-

based learning (i.e, nearest neighbor filtering) to cross-company 

data and within-company data to tune models for defect 

prediction. They improved performance in CPDP by using 40 

kinds of static code features. 

 Deep Learning in Defect Prediction 

However, programs not only contain structures but also 

syntaxes and semantics, which are hidden deeply in the source 

code [14]. The deep learning model can capture complicated 

nonlinear features. Therefore, many current methods use the 

deep learning model to generate features. Yang et al. [39] used 

deep belief network algorithms to generate features from initial 

change features and connect logistic regression classifiers for 

just-in-time defect prediction. Their method was able to 

discover more bugs and achieve higher F1 scores. Wang et al. 

[12] proposed a feature extraction model which learned the 

semantic representation of programs automatically from source 

code to optimize defect prediction performance. They used the 

deep belief network (DBN) model to learn semantic features 

from token vectors extracted from the ASTs of programs, and 

this method bridged the gap between programs’ semantics and 

defect prediction features. Li et al. [10] adopted and improved 

Wang et al.’s [12] method. They also extract token vectors from 

the ASTs of programs, then used CNN to extract semantic 

features for WDPD. Dam et al. [11] also followed and improved 

Wang et al.’s [12]  method by using tree-structured Long Short 

Term Memory (LSTM) network which directly matches with 

the ASTs representation of source code for defect prediction. 

With the development of deep learning, CNN and Recurrent 

Neural Network (RNN) have become the representative models 

for all deep learning courses and books [40]. CNN is very 

powerful in image recognition. Many models for pattern 

recognition are based on the CNN architecture [41][42][43]. 

CNN consists of one or more convolutional layers, a fully 

connected layer at the top, associated weights, and a pooling 

layer. In this structure, there are two key characteristics in CNN: 

local connections and shared weights. These characteristics can 

benefit defect prediction by capturing the local structural 

information of programs. Local connections generate local 

correlation of the inputs. Shared weights help defect prediction 

to detect features wherever the detect is located in the input and 

reduce the number of free parameters to increase learning 

efficiency. In addition, max-pooling reduces the dimensionality 

of representations and adds robustness to defect prediction. 

RNN is used in many topics such as machine translation, 

sentiment analysis, image caption, and it is especially widely 

used in the field of NLP research [44][45][46]. RNN uses 

internal memory to process input sequences. This structure 

processes text and remembers important words in the sentence. 

Because RNN is able to understand the semantics of the input 

data, it can perform defect prediction to capture the semantics 

of the programs. Xu et al. [47] used Latent Dirichlet Allocation 

(LDA) in NLP for topic extraction of contextual information. 

However, RNN is unable to handle the exploding gradient 

problem, and this makes it difficult for RNN to capture long 

term dependency. Different kinds of LSTMs are combined to 

solve this problem [48][49]. LSTM can do defect prediction 

because it is able to capture the long-term dependencies which 

exist between code elements. 

Attention is a mechanism which improves the effect of the 

RNN. Currently, attention mechanism is very popular and 

widely used in many fields such as machine translation, speech 

recognition, image caption, and so on [50][51][52]. Because 

attention mechanism assigns different weights to different parts 

of the input data, it is able to determine which part of the input 

requires more attention and extract features from key parts to 

attain information. Attention mechanism has a number of 

advantages, including helping models assign different weights 

to each part of the input data, helping models extract more 
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critical information, and making model judgments more 

accurate. In addition, attention mechanism saves computing and 

storage overhead. These advantages explain its extensive use, 

and for this reason, we used attention mechanism for defect 

prediction in our experiments. 

Cho et al. [53] proposed attention mechanism to solve the 

problem of traditional encoder-decoder model lacking 

discrimination on the input sequence. The model structure they 

proposed is depicted in Fig.2. Attention mechanism is able to 

overcome these problems because it assigns different weights 

to different parts of the input data. 

 𝑝(𝑌𝑖|𝑌1, … , 𝑌𝑖−1, 𝑋) = 𝑔(𝑌𝑖−1, 𝑠𝑖 , 𝑐𝑖) (1)  

 𝑠𝑖 = 𝑓(𝑠𝑖−1, 𝑌𝑖−1, 𝑐𝑖) (2)  

 𝑐𝑖 = ∑ 𝛼𝑖𝑗ℎ𝑗
𝑇𝑥
𝑗=1   (3)  

 
𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖)  =

exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)
𝑇
k=1

 (4)  

 𝑒𝑖𝑗 = 𝑎(𝑠𝑖−1, ℎ𝑗) (5)  

In Attention mechanism, the conditional probability is 

defined as Eq. (1). 𝑠𝑖  is the hidden state of the RNN in the 

decoder at time i in Eq. (2), and 𝑐𝑖 represents the context vector 

at time i. In the traditional Encoder-Decoder structure, the 

encoder encodes an input sequence X into a fixed-length context 

vector c. c is used as the initial vector to initialize the decoder 

model and predict output sequence 𝑌1. In addition, the  decoder 

model use context vector c and 𝑌𝑡−1 decoding to get the 𝑌𝑡 at 

time t, and values in Eq. (3) are weighted. In Eq. (4), i indicates 

the i -th word of the encoder, and ℎ𝑗  indicates the hidden vector 

of the j -th word of the encoder; namely, the hidden state of the 

RNN in the encoder at time j. In addition, 𝛼𝑖𝑗  indicates the 

weight between the j -th word of the  encoder and the i -th word 

of the decoder. Furthermore, 𝛼𝑖𝑗  is a softmax model; its output 

is the sum of the probability whose value is 1; 𝑒𝑖𝑗  ndicates an 

alignment model, and this model is used to measure the 

influence of the position of the j -th word of the encoder on the 

position of the i -th word of the decoder in Eq. (5). There are 

many methods to calculate 𝑒𝑖𝑗  and different calculation 

methods represent different Attention mechanism such as soft 

Attention, hard Attention, global Attention, local Attention and 

so on. The simplest and most common alignment model is the 

dot product. 

 
𝑎(𝑠𝑖−1, ℎ𝑗) = {

𝑠𝑖−1⃗⃗ ⃗⃗ ⃗⃗  ⃗
⊺
ℎ⃗                              𝑑𝑜𝑡

𝑠𝑖−1⃗⃗ ⃗⃗ ⃗⃗  ⃗
⊺
𝑊ℎ⃗                   𝑤𝑒𝑖𝑔ℎ𝑡

 (6)  

Eq. (6) contains different kinds of 𝑒𝑖𝑗 which indicates the 

degree of alignment between the source and the target word. 

Common alignment calculations are dot product and weight, 

which are the most general. After completing the above 

calculation, we can get the alignment vector 𝑎𝑖,𝑗 , namely, 

𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 , ℎ𝑠
̅̅̅), which is the weight of the context vector. Then, 

context vector 𝑐𝑖 can be obtained by weighted averaging, and 

we are able to get results of Y. 

 

Fig. 2.Attention Mechanism. 

III. DEFECT PREDICTION VIA SELF-ATTENTION MECHANISM 

In this Section, we elaborate our proposed DPSAM 

approach that can generate features from programs and predict 

defects. In order to build and evaluate our model, we mapped 

target programs into ASTs and split the dataset into training 

data and testing data. To uniform preprocessing steps with state 

of the art methods for comparison, we also mapped token 

vectors into integer vectors. We used integer vectors to train 

DPSAM, attain effective features, and predict buggy 

automatically from the training dataset. Our proposed approach 

contained four major steps as illustrated in Fig. 3: 

1. Input source code file 

2. Parsing source code into AST tokens 

3. Mapping tokens vector to integer vector 

4. DPSAM generates semantic features and predict defects 

automatically 

 

 
Fig. 3. Overview of our proposed approach. 

 Parsing Source Code 

There are many types of granularities for the symbol for 

software programs such as character-level, token-level, nodes 

on ASTs, and so on. [17] proves nodes on ASTs are good 

granularity. Therefore, in order to attain effective input features, 

we selected the proper granularity from ASTs. We used open 

source tools to transfer source code into ASTs to build program 

representation[54]. Referring to other works [10][12], we 

selected three main types of nodes as depicted in TABLE I: 

⚫ Method invocations and class instance creations: we 

record their method names or class names. 

⚫ Declaration nodes: we record their node types.  

⚫ Control-flow nodes: we also record their node types. 
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TABLE I.   THE SELECTED AST NODES 
Method invocations and class instance creations 

ClassOrInterfaceDeclaration MethodDeclaration 

Declaration nodes 

AnnotationDeclaration AnnotationMemberDeclaration 

ConstructorDeclaration EnumDeclaration 

FieldDeclaration ImportDeclaration 

InitializerDeclaration  
Control-flow nodes 

AssertStmt BlockStmt 

BreakStmt CatchClause 

ContinueStmt DoStmt 

ENAplicitConstructorInvocationStmt ENApressionStmt 

ForeachStmt ForStmt 

IfStmt LabeledStmt 

ReturnStmt SwitchEntryStmt 

SwitchStmt SynchronizedStmt 

ThrowStmt TryStmt 

WhileStmt  

 Data Preprocessing 

1) Encoding Tokens 

Many machine learning or deep learning models require 

input data in the form of integer vectors. Many methods exist to 

represent text, which is referred to as word representation. 

Word representation can convert the text into a computer 

readable output. Bag-of-Words(BoW) , Vector Space Model, 

and TF-IDF are common word representation methods. 

However, these methods have difficulty in presenting semantic 

in programs. For example, high dimension and high sparsity are 

two weaknesses of BoW [55]. These weaknesses take a great 

quantity of space and are not able to present the syntactic of 

programs. Therefore, we used token mapping to represent 

words to obtain semantic from programs effectively. 

We built a map between integers and tokens and encoded 

token vectors to integer vectors. Different class names, method 

names, and node types were mapped to different numbers 

starting from 1. We could get integer vectors converted from 

token vectors after this process. In addition, the order of the 

tokens remained unchanged, and the structure information of 

the program was retained. We filtered out AST nodes that were 

not frequently used since these AST nodes may be designed for 

specific files and were difficult to generalize to other files. This 

technique is a common practice in the natural language 

processing (NLP) research field [56]. 

2) Handling Imbalance 

Because the number of clean instances exceeded 

considerably the number of buggy instances in software defect 

data, the imbalanced data reduced the performance of our 

model [57]. Two methods can solve this problem in training 

data. The first method called downsampling is reducing the 

number of instances in the majority class, which could lead to 

information loss. The second method called oversampling 

includes increasing the number of instances in the minority 

class by duplicating buggy instances; we used this second 

method. Consequently, we were able to obtain a balanced 

dataset.  

 Training Self-Attention Mechanism and Predict Defect 

After completing the data preprocessing, we could use 

models to extract features. The model we used in our proposed 

approach was self-attention mechanism, which is widely used 

in NLP research, especially in machine translation. Self-

Attention mechanism differs from traditional Attention 

mechanism because traditional Attention mechanism calculates 

the base of hidden states of the source and the target to obtain 

the dependencies on each word of the source and each word of 

the target. This method ignores the dependencies on words of 

the source or the target. However, Self-Attention works on the 

source and the target, and also gets the dependencies on words 

of the source or the target, respectively. It can obtain the 

dependencies not only on the words of the source and the target, 

but also on words of the source or the target. Therefore, it is 

able to capture syntactic features or semantic features between 

words in sentences. Furthermore, it is better at capturing the 

internal correlation of data or features and is able to extract 

important features of data quickly. Therefore, we used Self-

Attention mechanism to extract features for defect prediction. 

Fig. 4. Multi-head Attention architecture. 

Self-Attention mechanism was implemented using scaled dot-

product Attention unit. Fig. 4 presents a multi-head Attention 

architecture, and the labeled parts are Scaled dot-product Attention 

units. First, the inputs are linearly transformed into Q, K, and V, 

respectively. Q indicates query, K indicates key, and V indicates value. 

Q, K, and V are all converted from the inputs; however, the weights of 

the linearly transformed matrix are different. 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (7)  

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂 (8)  

The expression for scaled dot-product Attention is in Eq. (7) 

and it is the weighted expression equation. Scaling is used to 

prevent excessive input from making training unstable, and 

softmax is used to normalize its results into probability 

distributions. Mask is used to mask future information to ensure 

time alignment. Its output is a weighted result of V. 𝑑𝑘 indicates 

the dimension of a Q and K vector. In Fig. 4, Q, K, and V make 

a linear transformation, and then enter the scaled dot-product 

Attention. In Eq. (8), multi-head Attention makes different 

projections for Q, K, and V for h times. ℎ𝑒𝑎𝑑𝑖  is equal to 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) . 𝑊𝑖

𝑄
 belongs to 𝑅𝑑𝑚𝑜𝑑𝑒𝑙∗𝑑𝑘 ; 

𝑊𝑖
𝐾  belongs to 𝑅𝑑𝑚𝑜𝑑𝑒𝑙∗𝑑𝑘 ;   𝑊𝑖

𝑉  belongs to 𝑅𝑑𝑚𝑜𝑑𝑒𝑙∗𝑑𝑣 . The 

parameter 𝑊 is different every time when Q, K, and V make 

linear transformations. Then we concat the results of scaled dot-

product Attention for h times and conduct linear transform 

again to obtain the result of multi-head Attention. Because the 

multi-head Attention calculates for h times not only once, the 
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model can learn relevant information in different representation 

subspaces. 

Attention mechanism completed feature extraction and 

generated new features. Then, we connected a pooling layer to 

reduce the dimensionality of intermediate representations and 

provide additional robustness. Considering the whole defect 

prediction process time, we did not connect classifiers such as 

logistic regression to get results when obtaining new features. 

We connected a sigmoid layer to convert the score for each 

word into a probability value. In the structure, our model was 

able to extract the semantic of programs and predict defects 

automatically. In addition, in order to have good feature 

extraction performance, model tuning is necessary. The training 

hyper-parameters for Self-Attention mechanism are depicted in 

TABLE II. 

 
TABLE II. VALUES OF HYPER-PARAMETERS 

Hyper-parameter Value 

batch size  36 

optimization  Adam 

loss function  Binary crossentropy 

dropout 0.5 

embedding dimension 20 

multi-head number 3 

IV. EXPERIMENT AND DISCUSSION 

 Dataset 

We used open source data from the PROMISE dataset and 

chose 7 Java projects as our source code [58]. All of the data 

were labeled as clean or buggy. Furthermore, most code were 

accessible from Github. As depicted in TABLE III, the buggy 

rates of the projects had a minimum value of 22.4% and a 

maximum value of 58.2%. Furthermore, TABLE IV reveals 

that the file numbers of projects ranged from 108 to 964. 

 
TABLE III. SUMMARY of PROMISE DATASET 

Dataset Description Avg File Avg Buggy (%) 

camel  Enterprise integration framework 814 22.4 

log4j  Logging library for Java 150 58.2 

lucene  Text search engine library 269 54.2 

poi  Java library to access Microsoft format files 344 51.3 

synapse  Data transport adapters 211 25.5 

Xalan  A library for transforming NAML files 830 54.3 

Xerces  NAML parser 493 38.9 

 

TABLE IV. DATASET VERSIONS 

Dataset Version Dataset Version 

camel 1.2 1.4 1.6  synapse 1.0 1.1 1.2  

File number 607 871 964  File number 157 222 256  

Buggy file 216 145 188  Buggy file 16 60 86  

Buggy (%) 35.6 16.6 19.5  Buggy (%) 10.2 27.0 33.6  

log4j 1.0 1.1 1.2  Xalan 2.4 2.5 2.6 2.7 

File number 134 108 204  File number 723 803 885 909 

Buggy file 34 37 189  Buggy file 110 387 411 898 

Buggy (%) 25.4 34.3 92.6  Buggy (%) 15.2 48.2 46.4 98.8 

lucene 2.0 2.2 2.4  Xerces 1.2 1.3 1.4  

File number 194 274 339  File number 440 453 588  

Buggy file 91 144 203  Buggy file 71 69 437  

Buggy (%) 46.9 52.6 59.9  Buggy (%) 16.1 15.2 74.3  

poi 1.5 2.0 2.5 3.0      

File number 237 314 385 442      

Buggy file 141 37 248 281      

Buggy (%) 59.5 11.8 64.4 63.6      

 Evaluation Metrics 

In this paper, we plan to use four metrics, including 

accuracy, precision, recall, and F1 score, which are widely used 

in research related to machine learning and deep learning  

[10][12][59][60]. Accuracy is the common baseline to verify 

performance for the classification problem. However, software 

defect data has a data skew problem such as data imbalance, 

where the number of clean instances outnumbers buggy 

instances considerably. Therefore, we used the F1 score which 

is widely adopted to evaluate model performance as metrics. 

TABLE V is a confusion matrix table with 4 different 

combinations of predicted values and actual values, including 

true positive, true negative, false positive, and false negative 

[61]. True positive is the number of predicted defective files 

which are truly buggy. In contrast, false positive is the number 

of predicted defective files which are clean. True negative is the 

number of predicted non-defective files which are clean in fact, 

whereas false negative is the number of predicted non-defective 

files which are actually buggy.  

Precision reflects the ability of classification models to 

distinguish negative samples. The higher the precision, the 

stronger the distinguishing ability for negative samples. 

Furthermore, recall reflects the ability for distinguishing 

positive samples. F1 score combines both of them. Therefore, 

F1 reflects the robustness of classification models. The higher 

the value of all the metrics, the better. 

 

 Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 = 

𝑁𝑏→b

 𝑁𝑏→𝑏+𝑁𝑐→𝑏
 (9)  

 Recall = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 = 

𝑁𝑏→𝑏

 𝑁𝑏→𝑏+𝑁𝑏→𝑐
 (10)  

 F1 score = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 (11)  

 

TABLE V. CONFUSION MATRIX 

 Actual Values: Positive Actual Values: Negative 

Predicted Values: Positive True Positive False Positive 

Predicted Values: Negative False Negative True Negative 

 Baseline Methods 

We compared our proposed DPSAM approach with the 

following baseline methods in defect prediction displayed in 

TABLE VI.  

⚫ DBN: the state-of-the-art method which employs DBN 

on source code to extract semantic features and use DBN-

learned features into classifier models such as Logistic 

Regression or Naive Bayes for prediction [12].  

⚫ DP-CNN: the state-of-the-art method which employs 

CNN on source code to extract semantic features and use 

CNN-learned features into Logistic Regression for 

prediction [10]. 

⚫ DP-CNN+: an extended version of DP–CNN proposed by 

us to complete CPDP performance not in DP-CNN, 

which use CNN-learned features into Logistic Regression 

or Naive Bayes for prediction. 

Because there is no result of CPDP in DP-CNN+, we 

implemented DP-CNN to get the baseline method and complete 

the experiment data. When we implemented DP-CNN+, we 

used the same network architecture and parameter. We followed 

the same procedure to preprocess source code, including 
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parsing program, encoding tokens, and handling imbalance. In 

DP-CNN+, we used logistic regression and naive Bayes for 

defect prediction. In addition, to save classifier training time, 

we did not connect the classifier, but used the pooling layer and 

sigmoid layer to calculate the probability of buggy 

automatically in DPCNN+ and DPSAM. 

 
TABLE VI. THE DESCRIPTION OF FOUR DIFFERENT MODELS 

Models Classifier Method name 

DBN Logistic Regression DBN-LR 

DBN Naive Bayes DBN-NB 

DP-CNN Logistic Regression DPCNN-LR 

DP-CNN+ Logistic Regression DPCNN+LR 

DP-CNN+ Naive Bayes DPCNN+NB 

DP-CNN+ NA DPCNN+ 

DPSAM NA DPSAM 

 Experimental Result 

In our experiments, we compared our proposed approach 

with deep learning models, including DBN and CNN. The 

experimental results revealed the performance for software 

defect prediction in accuracy, precision, recall, and F1 score. 

There are two kinds of defect prediction: WPDP and CPDP. In 

this section, we demonstrate defect prediction results in both 

WPDP and CPDP. 

 

1) Within-Project Defect Prediction (WPDP) 

The performance of DPSAM are displayed from TABLE 

VII to TABLE X. The datasets of DBN may contain experiment 

results because it implemented cross version defect prediction. 

Therefore, we selected the results demonstrating the best 

performance, which is indicated by a star (*) in TABLE VII. 

However, the average performance is the value of the original 

paper. DP-CNN is missing results of three datasets, including 

ant, ivy, and log4j. In addition, only one metric was used to 

record the performance of the results; namely, F1-score in DBN 

and DP-CNN. We marked the missing data as NA. 

First, discussing with F1 score, the average performance of 

our proposed approaches was 70%. As depicted in TABLE VII, 

DPSAM achieved 16.8% performance improvement compared 

to the average performance of DBN, achieved 14.4% 

performance improvement compared to DP-CNN, and achieved 

56.5% performance improvement compared to the average 

performance of DP-CNN+. Referring to the original paper, 

parameters of DP-CNN were variable when constructing the 

feature extraction model. However, we implemented DP-

CNN+ with consist parameters. This may explain performance 

not being as good as that of DP-CNN. 

As for the other metrics, such as accuracy, precision, and 

recall, our proposed approach achieved performance 

improvement 1.38 times higher than the average accuracy of 

DP-CNN+. However, the precision of our proposed approach 

was not as good as the average precision of DP-CNN+. Recall 

of DPSAM was 2.08 times higher than the average recall of DP-

CNN+. Precision reflects the ability of classification models to 

distinguish negative samples. The higher the precision, the 

stronger the distinguishing ability for negative samples. Recall 

reflects the distinguishing ability in positive samples. In defect 

prediction, positive means the data is buggy and vice versa. 

Finding out files that contain defects is more important than 

predicting files that are clean. Therefore, the performance of 

DPSAM was better than that of DP-CNN+. The experimental 

results demonstrated that our proposed approach was useful for 

WPDP. Our proposed approach outperforms the four metrics to 

varying degrees. 
 

TABLE VII. F1 SCORES IN WPDP 

F1 score 
DBN 

-LR* 

DBN-

NB* 

DPCNN

-LR 

DPCNN

+LR 

DPCNN

+NB 

DPCNN

+ 
DPSAM 

camel 59.8 48.1 50.8 16.7 32.9 29.1 38.9 

log4j 68.2 72.5 NA 40.2 43.5 49.0 97.9 

lucene 63.0 73.8 76.1 67.4 50.3 75.6 75.6 

poi 78.3 77.7 78.4 64.8 52.2 56.3 78.2 

synapse 54.1 57.9 55.6 45.0 55.3 49.4 59.0 

Xalan 56.5 45.2 69.6 50.8 54.1 45.7 99.9 

Xerces 47.5 38.0 37.4 36.8 23.9 1.9 41.5 

Average 61.1 59.0 61.3 46.0 44.6 43.9 70.1 

 

TABLE VIII. Accuracy in WPDP 

Accuracy 
DBN 

-LR 

DBN 

-NB 

DPCNN-

LR 

DPCNN+ 

LR 

DPCNN+ 

NB 
DPCNN+ DPSAM 

camel 

NA NA NA 

77.5 75.0 78.0 66.7 

log4j 27.1 29.7 33.9 95.8 

lucene 62.9 55.7 60.8 60.8 

poi 61.9 56.2 58.9 64.2 

synapse 72.0 73.2 33.1 65.0 

Xalan 34.1 37.1 29.7 99.9 

Xerces 48.5 43.3 36.2 48.8 

Average 54.9 52.9 47.2 71.6 

 

TABLE IX. PRECISION IN WPDP 

Precision 
DBN 

-LR 

DBN-

NB 

DPCNN-

LR 

DPCNN+ 

LR 

DPCNN+ 

NB 
DPCNN+ DPSAM 

camel 

NA NA NA 

32.3 35.6 41.2 30.7 

log4j 94.0 94.5 93.8 95.8 

lucene 72.3 78.9 60.8 60.8 

poi 79.4 86.8 88.5 64.2 

synapse 67.4 63.6 33.2 48.9 

Xalan 100.0 100.0 100.0 99.9 

Xerces 87.5 87.9 100.0 78.7 

Average 76.1 78.2 73.9 68.4 

 

TABLE X. RECALL IN WPDP 

Recall 
DBN 

-LR 

DBN-

NB 

DPCNN-

LR 

DPCNN+ 

LR 

DPCNN+ 

NB 
DPCNN+ DPSAM 

camel 

NA NA NA 

11.2 30.5 22.5 52.9 

log4j 25.5 28.3 33.2 100.0 

lucene 63.1 36.9 100.0 100.0 

poi 54.8 37.4 41.3 100.0 

synapse 33.7 48.8 96.5 74.4 

Xalan 34.0 37.1 29.6 100.0 

Xerces 23.3 13.8 1.0 28.1 

Average 35.1 33.3 46.3 79.3 

 

2) Cross-Project Defect Prediction(CPDP) 

CPDP means training data and testing data are located in 

different projects. We used the last version in every dataset as 

testing data and older versions as training data. For example, in 

the camel dataset, our training data were 1.2, and 1.4, and 

testing data was 1.6; in CPDP, training data were the same; 

however, testing data was 1.2 from the log4j dataset, 2.4 from 

the lucene dataset, and so on. We used 7 Java projects as our 

source code. Therefore, for the 7 datasets multiplied by 4 

metrics, there was 28 tables in total. To save layout and increase 

legibility, we consolidated the experiment results from TABLE 

XI to TABLE XV. 

DBN did not verify all the datasets in CPDP. For example, 
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when the ant dataset served as training data, only the results that 

used camel dataset and poi dataset as testing data were available. 

Therefore, we indicated this with a star (*) in  TABLE XI. There 

was no result of CPDP in DP-CNN [10] and no accuracy, 

precision and recall result for CPDP in DBN [12]; therefore, we 

marked the missing data as NA. First, regarding F1 score, 

average performance of the proposed methods was 71.9%. As 

depicted in TABLE XI ,we can perceive that, DPSAM achieved 

23% performance improvement compared to DBN, and 

achieved 60% performance improvement compared to average 

DP-CNN+ performance. In addition, the performance of other 

methods was inconsistent in different datasets; however, our 

proposed approach maintained the performance in different 

datasets. Obviously, DPSAM is a stable model. As for the other 

metrics, our proposed approach achieved performance 

improvement 1.29 times higher than the average accuracy of 

DP-CNN+. Although the precision of our proposed approach is 

not as good as the average precision of DP-CNN+, recall of 

DPSAM was 2.14 times higher than the average recall of DP-

CNN+. The phenomenon and reason were as mentioned earlier 

for WPDP. Therefore, it can be concluded that the performance 

of DPSAM was better than DP-CNN+. 

We set a baseline where the model was applicable to a tested 

dataset if the F1 score was above 70%. For each dataset, 

TABLE XV reports the number of the other datasets to which 

the corresponding models can be applied. Our proposed 

approach improved the general applicability of prediction 

models and was more applicable than other methods. Each 

dataset was successfully applicable to at least 3 other datasets 

and some of them were even applicable to 4 other datasets. 

Generally, the performance of CPDP was poor because feature 

distribution differed between the source projects and the target 

projects. Altogether, our proposed approach was more reliable 

and more accurate than DBN and DP-CNN models. 

Furthermore, our proposed approach improved performance in 

CPDP. 

 Observation and Discussion 

Defect prediction faces two main problems in the twenty-

first century. The first problem relates to building a precise 

prediction model for new projects or projects having less 

historical data. Therefore, many CPDP models have been 

proposed. Our proposed approach overcame the first problem. 

The second question relates to applying defect prediction 

models in industry. Fortunately, numerous studies, including 

case studies and proposed practical applications have been 

conducted. Rahman et al. [62] demonstrated that defect 

prediction was able to help prioritize warnings reported by 

static bug finders. Another application involved using defect 

prediction results to prioritize or select test cases, such as saving 

testing cost in regression testing.  

In addition, testing in system development life cycle (SDLC) 

helps developers to ensure functionality and reliability of 

software systems. However, it accrues considerable software 

development costs. Therefore, having a good testing strategy to 

find and fix defects is crucial for any industry. Predicting buggy 

files, modules, or functions supports managing the limited test 

resources and avoid releasing software with critical defects. Our 

proposed approach can predict buggy files in the system. 

Therefore, accurate prediction of defect‐prone files aids 

developers to direct test efforts, reduce costs, and improve the 

software testing process by focusing on defect-prone files.  

Our proposed approach is able to predict buggy files in the 

overall system automatically. Therefore, developers or 

maintenance personnel can understand which files are defect‐
prone and test these files first in the testing phase. The test phase 

includes white box testing and black box testing. In white box 

testing, developers can use the AST tokens parsed by our 

proposed approach to understand the structure and process of  

the program. This method supports developers in writing test 

cases. In black box testing, developers are able to allocate more 

testing effort to the buggy files and reduce testing effort on the 

clean files. This approach can aid in reducing time consumption 

in black box testing. Therefore, our proposed approach can help 

reduce errors in industrial applications, reduce overall testing 

time, and avoid outflow of defects to ensure product quality. 
 

TABLE XI. F1 SCORE IN CPDP. 

F1 SCORE 
DBN-

LR/NB* 

DPCNN 

+LR 

DPCNN 

+NB 
DPCNN+ DPSAM 

camel NA 42.6 44.1 40.1 78.8 

log4j 69.2 49.0 46.0 50.6 71.5 

lucene 58.4 65.1 48.4 73.1 73.1 

poi 51.4 52.4 48.2 48.5 72.9 

synapse 66.1 33.8 36.7 39.7 69.2 

xalan 49.0 50.3 50.0 46.3 74.8 

xerces 57.2 29.4 28.9 20.7 63.2 

Average 58.6 46.1 43.2 45.6 71.9 

 

TABLE XII. ACCURACY IN CPDP. 

Accuracy 
DBN-

LR/NB 

DPCNN 

+LR 

DPCNN 

+NB 
DPCNN+ DPSAM 

camel 

NA 

51.3 47.2 45.3 77.3 

log4j 56.6 55.3 58.2 65.1 

lucene 64.0 52.3 63.0 63.0 

poi 52.9 52.5 52.2 66.8 

synapse 42.5 45.1 47.4 67.2 

xalan 56.0 56.4 55.9 70.0 

xerces 43.9 45.2 41.1 58.5 

Average 52.5 50.6 51.9 66.8 

 

TABLE XIII. PRECISION IN CPDP. 

Precision 
DBN-

LR/NB 

DPCNN 

+LR 

DPCNN 

+NB 
DPCNN+ DPSAM 

camel 

NA 

84.0 86.0 85.7 82.9 

log4j 73.1 73.9 72.6 61.0 

lucene 72.3 74.9 63.0 63.0 

poi 71.6 74.9 73.2 63.0 

synapse 79.5 79.8 80.5 76.3 

xalan 73.0 73.8 72.3 64.8 

xerces 73.6 79.4 72.6 65.1 

Average 75.3 77.5 74.3 68.0 

 

TABLE XIV. RECALL IN CPDP. 

Recall 
DBN-

LR/NB 

DPCNN 

+LR 

DPCNN 

+NB 
DPCNN+ DPSAM 

camel 

NA 

35.8 31.0 27.2 76.4 

log4j 40.3 37.1 42.9 94.7 

lucene 64.4 40.0 100.0 63.0 

poi 47.7 39.6 40.5 95.5 

synapse 21.8 26.0 26.6 67.2 

xalan 37.3 36.5 32.0 87.7 

xerces 21.7 19.3 15.4 73.5 

Average 38.4 32.8 40.7 79.7 

 

168



 

TABLE XV. APPLICABLE DATASET IN CPDP 

Applicable 

dataset 

DBN-

LR/NB 

DPCNN 

+LR 

DPCNN 

+NB 
DPCNN+ DPSAM 

camel 1 0 0 0 3 

log4j 0 0 0 0 4 

lucene 0 3 0 4 4 

poi 0 0 0 0 4 

synapse 0 0 0 0 4 

Xalan 0 0 0 0 4 

Xerces 0 0 0 0 3 

Average 0.1 0.4 0.0 0.6 3.7 

V. CONCLUSIONS 

Assuring the quality of projects is not only necessary but 

also increases efficiency when developing software. Generally, 

developers might need to find the main causes of these detected 

faults and then eliminate them in order to reduce the occurrence 

of faults and the risks of software-failure. For instance, a cause 

and effect diagram (CED), also called the fishbone diagram, is 

typically designed to sort and determine the potential causes of 

the observed problems and effects [63]. Practically, in order to 

identify the causes, engineers and project managers have to 

group the causes into some major categories, such as the 

product, process, people, development environment, tool, 

training, etc. The root causes analysis can be implemented and 

proposed solutions (i.e., details of fault prevention activities, 

responsible person, implementation start/end dates, etc.) can 

also be developed through some brainstorming meetings or 

direct suggestions or instructions from senior engineers or 

managers. In addition, fault history classifications or change 

history classification will usually be created, maintained, and 

updated [64]. 

Software defect prediction is a skill in software engineering 

which can add reliability to programs. In this paper, we propose 

DPSAM as an approach to predict defects. We use self-

attention mechanism to extract feature from programs. Our 

proposed approach was able to save the semantic of programs 

and predict defects automatically. We implemented our 

experiment on 7 open source datasets which are also used in [12] 

and [10]. In WPDP, DPSAM achieved 16.8% and 14.4% 

performance improvement compared to state-of-the-art DBN-

based method and DP-CNN-based method in F1 score, 

respectively. We verified our experiment in more data sets and 

enhanced the reliability of our proposed approach. The features 

of source projects and target projects often have different 

distributions, so it is challenging to attain good performance in 

CPDP. However, in CPDP, DPSAM achieve 23% and 60% 

performance improvement in F1 score compared to DBN and 

DP-CNN+ respectively. In addition, compared to state-of-the-

art methods, our proposed approach demonstrated the best 

performance and was not the most time-consuming. Therefore, 

our proposed approach was more efficient. Altogether, the 

quality of software would be significantly increased and the risk 

of project-failure can be greatly reduced if defects are detected 

as early as possible. 
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