

Use of Deep Learning Model with Attention Mechanism for Software Fault Prediction

Ting-Yan Yu

Department of Computer Science

National Tsing Hua University

Hsinchu, Taiwan

eva52525@gmail.com

Chin-Yu Huang

Department of Computer Science

National Tsing Hua University

Hsinchu, Taiwan

cyhuang@cs.nthu.edu.tw

Neil C. Fang

Department of Computer Science

National Tsing Hua University

Hsinchu, Taiwan

chihchiang0113@seed.net.tw

Abstract—Software defect prediction is a skill in software

engineering that can increase program reliability. In the past, most

defect prediction studies have been based on size and complexity

metrics. In recent years, machine learning based predictive studies

have been conducted. To build an accurate prediction model,

choosing effective features remains critical. In this paper, we

constructed a deep learning model called Defect Prediction via

Self-Attention mechanism (DPSAM) to extract semantic features

and predict defects automatically. We transferred programs into

abstract syntax trees (ASTs) and encoded them into token vectors.

With input features, we trained a self-attention mechanism to

extract semantic features of programs and predict defects. We

evaluated performance on 7 open source projects. In Within-

Project Defect Prediction (WPDP), DPSAM achieved 16.8% and

14.4% performance improvement compared to state-of-the-art

deep belief network (DBN)-based method and defect prediction via

convolutional neural network (DP-CNN)-based method in F1

score, respectively. Besides, in Cross-Project Defect Prediction

(CPDP), DPSAM achieve 23% and 60% performance

improvement in F1 score compared to DBN-based method and

DP-CNN-based method.

Keywords: Software engineering, Defect prediction, Deep learning,

Convolutional Neural Network, Attention mechanism, Self-

Attention mechanism.

I. INTRODUCTION

In recent years, advances in science and technology has led

to software development growing more complex and projects

increasing in scale. In order to meet and ensure quality

standards and complete schedules on time, an increasing

number of methodologies have been developed for software

engineering technology. Currently, a number of methods to

enhance software quality exist. During the software

development process, software testing is generally used to

verify whether or not the developed software satisfies user’s or

project’s requirements. Software failure data can be collected

and recorded during testing and operational phases, and they are

assumed to provide additional information about the failure

process [1]. From the test results, project managers and

engineers can then objectively make an assessment about the

quality or the acceptability of the software.

However, decreased project development time and a wide

variety of program languages have increased the difficulty of

testing. Therefore, assuring quality and reliability are not only

necessary but also increase efficiency. Software defect

prediction is a skill in software engineering which can add

reliability to programs [2][3][4][5][6][7][8]. Practically, based

on the results of early prediction of fault distribution, project

managers are able to make required changes to the

development approach; that is, managers can choose to revise

schedules, reallocate testing resources. Additionally, developers

may have to reevaluate the criteria used to determine which

program modules or components should receive corrective

actions and institute any needed changes.

Software defect prediction identifies the modules that are

defect prone and require extensive testing. For engineering

programs, it can condense time, reduce overheads and

wherewithal, and provide assurance quality of products.

Therefore, a variety of methods have been developed. Most

defect prediction studies are based on size and complexity

metrics in the past. Many studies based on data fitting models

or linear models which use different metrics to derive

estimations are currently available. In recent years, with the

development of machine learning, more and more machine

learning based predictive studies that use regression models or

classification models to predict software defects.

Most machine learning based processes use features

extracted from labeled historical defect data, including code

features and process features. By using weighted algorithms

and extracted features, the machine learning based methods

produce features and put generated features into the machine

learning classifier model to enhance performance. Today, deep

learning skill has grown considerably in popularity and is

applied widely in many research areas [9]. Already, many

methods currently use deep learning to conduct feature

generation [10][11][12][13]. Programs include not only

structures but also syntaxes and semantics, which are hidden

deeply in the source code [14]. Deep learning models can

capture complicated non-linear features [15]. However, features

generated from machine learning based processes are unable to

obtain semantic features from programs. Deep learning models

are used to perform feature generation, which in turn enhances

reliability. Abstract syntax trees (ASTs) have well defined

syntaxes from programs [16][17][18]. Therefore, deep learning

models can be used with input token vectors extracted from the

ASTs of programs to learn semantic features.

There are two kinds of defect predictions: WPDP and CPDP

[19][20]. Traditional defect prediction methods gain effective

performance in WPDP. However, when training dataset and

testing dataset are in different projects, namely CPDP, the

performance is unsatisfactory. Using the features generated

from deep learning methods can also overcome this problem.

Currently, Attention mechanism is very popular and widely

used in many fields, such as machine translation, speech

recognition, image caption, and so on [21][22][23][24].

Compared with other deep learning models, attention

mechanism can parallelize training in efficiency, reduce

161

2021 8th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/21/$31.00 ©2021 IEEE
DOI 10.1109/DSA52907.2021.00025

training time, and achieve optimal performance with minimum

training cost. Consequently, we used attention mechanism to

generate more reliable features and proposed an approach

called DPSAM to perform defect prediction.

In addition, to produce the proper inputs for deep learning

model, we had to process ASTs from programs. Therefore, we

used word embedding to exploit the program context. Word

embedding maps each AST token into a numerical vector,

which is trained regarding the context of each token. After

finishing pre-process to target programs, the generated features

are put into the machine learning classifier model, such as

Logistic Regression or Naive Bayes, to predict programs as

buggy or clean. However, connecting the classifier and tuning

classifier model increases the time consumed in defect

prediction process. Therefore, our proposed approach generates

features from programs and predicts defects automatically

without connecting the machine learning classifier. In addition,

this process is able to assess whether the connecting classifier

is worth it or not and validate the trade-off between time

consumption and performance.

The contributions of our paper are as follows:

⚫ We propose a deep learning based model, DPSAM, to

generate features from programs in ASTs and predict

buggy or clean from programs automatically.

⚫ We leverage the semantic features learned automatically

by Self-Attention mechanism to improve both WPDP and

CPDP.

⚫ Our evaluation results on 7 open source Java projects

show that using Self-Attention mechanism to generate

features improves both WPDP and CPDP. In WPDP, the

performance of DPSAM performs as well as the state of

the art deep belief network (DBN)-based and the defect

prediction via convolutional neural network (DP-CNN)

method in F1 score and accuracy. Furthermore, the results

in CPDP demonstrate that the automatically learned

features by DPSAM outperforms the state-of-the-art DP-

CNN method.

The rest of this paper is organized as follows. In Section II,

we provide a brief background on software defect prediction,

including machine learning models, deep learning models, and

Attention mechanism. Then, we present our proposed approach

in Section III. In Section IV, we show the result of our

experiment and some observations and discussions. Finally,

some conclusions and future works are described in Section V.

II. RELATED WORKS

 Overview of Software Defect Prediction

Software defect prediction, which is a skill in software

engineering, can discover the regions of buggy code. In addition,

it helps developers allocate their testing efforts by first checking

potentially buggy code and saving testing time. Due to its

importance, software defect prediction has been the focus of

researchers for a long time. A number of software defect

prediction methods have been published in the past. For

example, many test case prioritization techniques aimed to

schedule test cases in a manner that increased the rate of fault

detection for regression testing. They usually prioritized test

cases according to information acquired by analyzing the

source code. Huang et al. [25] proposed a Modified Cost-

Cognizant Test Case Prioritization (MCCTCP) method based

on the use of historical records. They gathered the historical

records from the latest regression testing and then proposed a

genetic algorithm to determine the most effective order. Their

experiments showed that the MCCTCP method could

effectively improve the effectiveness of cost-cognizant test case

prioritization without analyzing the source code, even when test

case costs and fault severities were uniform.

Additionally, Huang et al. [26] also proposed a bounded

generalized Pareto distribution (BGPD) model to investigate

the fault distributions of open source software. Their proposed

BGPD model could eliminate certain issues that occurred in the

classical Pareto distribution model and exhibited impressive

performance on modeling the distribution of software faults.

Luan and Huang [27] once proposed a single change-point 2-

parameter generalized PD (SCP-2GPD) model with a very

flexible structure and which could model a wide spectrum of

software development environments. Their experimental

results showed that the Pareto principle could be applied to

describe the fault distribution of OSS, and their proposed SCP-

2GPD model can be used to depict various OSS fault

distributions.

However, most defect prediction studies before the

development of machine learning were based on size and

complexity metrics. A number of studies based on data fitting

models or linear models used different metrics to arrive at

estimations. However, an increasing number of machine

learning based predictive studies using regression models or

classification models to predict have emerged. In the past, most

defect prediction methods used traditional hand-crafted features

to make estimations. Traditional hand-crafted features are static

code features or process features, including Halstead features-

based on the number of operators and operands, McCabe

features-based on dependencies, CK features for object-

oriented programs, and so on [28][29][30]. Code metrics

include LCOM, CBO, and other similar metrics. Process

features contain the number of revisions, authors, past fixes,

and so on. Halstead proposed a number of size metrics, which

have been interpreted as complexity metrics, and used these as

predictors of program defects [31]. Compton and Withrow of

UNISYS derived many polynomial equations to optimize

module sizes and discovered that small-size software

components often had an extremely high fault density [32].

In machine learning, defect prediction techniques use

features to train classifiers to predict defect. And there are

various code areas, including method, file, and change. Our

proposed approach is file-level defect prediction. File level

means that each of the training instances or testing instances is

a source code file. Machine learning based defect prediction

process consists mainly of three parts. First, data needs to be

split as training data and testing data. Then, the machine

learning classifier needs to be trained with generated features

from training programs for defect prediction. Finally, the target

program needs to be entered into the pre-trained classifier to

predict whether the program is buggy or clean. The entire

162

process of defect prediction is depicted in Fig.1. Hassan et al.

[33] used the entropy of features from code change processes

instead of code to predict defects and demonstrate that

predictors based on change complexity models were better

predictors of future faults in large software systems.

Furthermore, Lee et al. [34] proposed 56 novel micro

interaction metrics that leverage developers' interaction

information stored in the Mylyn data to perform defect

prediction. Their experimental results revealed that MIMs were

able to improve defect classification and regression accuracy.

Fig. 1. Process flow of the defect prediction

There are two kinds of defect prediction: WPDP and CPDP.

In WPDP, training data and testing data are in the same project.

Conversely, in CPDP, training data and testing data are in the

different project. Because the features of source projects and

target projects often have different distributions, it remains

challenging to attain good performance in CPDP [19][34]. Data

are derived from the same project in WPDP. Wang et al. [35]

proposed defect prediction models based on the C4.5 model to

reduce the size of the decision tree model and increase

performance by using two modules from Eclipse. Khoshgoftaar

and Seliya [36] examined the performance of machine learning

algorithms in regression tree types, including CART-LS, S-

PLUS, and CART-LAD on defect prediction by using

telecommunications software system data which was

programmed in PROTEL. Data were derived from the different

project in CPDP. TCA made feature distributions in the source

and target projects similar. And Nam et al. [37] proposed TCA+

optimized TCA’s normalization process to improve the

performance of CPDP by using eight open-source projects,

including projects of ReLink and projects of AEEEM, which

are traditional hand-crafted features. Their experimental result

showed that TCA+ improved cross-project prediction

performance significantly. Turhan et al. [38] applied analogy-

based learning (i.e, nearest neighbor filtering) to cross-company

data and within-company data to tune models for defect

prediction. They improved performance in CPDP by using 40

kinds of static code features.

 Deep Learning in Defect Prediction

However, programs not only contain structures but also

syntaxes and semantics, which are hidden deeply in the source

code [14]. The deep learning model can capture complicated

nonlinear features. Therefore, many current methods use the

deep learning model to generate features. Yang et al. [39] used

deep belief network algorithms to generate features from initial

change features and connect logistic regression classifiers for

just-in-time defect prediction. Their method was able to

discover more bugs and achieve higher F1 scores. Wang et al.

[12] proposed a feature extraction model which learned the

semantic representation of programs automatically from source

code to optimize defect prediction performance. They used the

deep belief network (DBN) model to learn semantic features

from token vectors extracted from the ASTs of programs, and

this method bridged the gap between programs’ semantics and

defect prediction features. Li et al. [10] adopted and improved

Wang et al.’s [12] method. They also extract token vectors from

the ASTs of programs, then used CNN to extract semantic

features for WDPD. Dam et al. [11] also followed and improved

Wang et al.’s [12] method by using tree-structured Long Short

Term Memory (LSTM) network which directly matches with

the ASTs representation of source code for defect prediction.

With the development of deep learning, CNN and Recurrent

Neural Network (RNN) have become the representative models

for all deep learning courses and books [40]. CNN is very

powerful in image recognition. Many models for pattern

recognition are based on the CNN architecture [41][42][43].

CNN consists of one or more convolutional layers, a fully

connected layer at the top, associated weights, and a pooling

layer. In this structure, there are two key characteristics in CNN:

local connections and shared weights. These characteristics can

benefit defect prediction by capturing the local structural

information of programs. Local connections generate local

correlation of the inputs. Shared weights help defect prediction

to detect features wherever the detect is located in the input and

reduce the number of free parameters to increase learning

efficiency. In addition, max-pooling reduces the dimensionality

of representations and adds robustness to defect prediction.

RNN is used in many topics such as machine translation,

sentiment analysis, image caption, and it is especially widely

used in the field of NLP research [44][45][46]. RNN uses

internal memory to process input sequences. This structure

processes text and remembers important words in the sentence.

Because RNN is able to understand the semantics of the input

data, it can perform defect prediction to capture the semantics

of the programs. Xu et al. [47] used Latent Dirichlet Allocation

(LDA) in NLP for topic extraction of contextual information.

However, RNN is unable to handle the exploding gradient

problem, and this makes it difficult for RNN to capture long

term dependency. Different kinds of LSTMs are combined to

solve this problem [48][49]. LSTM can do defect prediction

because it is able to capture the long-term dependencies which

exist between code elements.

Attention is a mechanism which improves the effect of the

RNN. Currently, attention mechanism is very popular and

widely used in many fields such as machine translation, speech

recognition, image caption, and so on [50][51][52]. Because

attention mechanism assigns different weights to different parts

of the input data, it is able to determine which part of the input

requires more attention and extract features from key parts to

attain information. Attention mechanism has a number of

advantages, including helping models assign different weights

to each part of the input data, helping models extract more

163

critical information, and making model judgments more

accurate. In addition, attention mechanism saves computing and

storage overhead. These advantages explain its extensive use,

and for this reason, we used attention mechanism for defect

prediction in our experiments.

Cho et al. [53] proposed attention mechanism to solve the

problem of traditional encoder-decoder model lacking

discrimination on the input sequence. The model structure they

proposed is depicted in Fig.2. Attention mechanism is able to

overcome these problems because it assigns different weights

to different parts of the input data.

 𝑝(𝑌𝑖|𝑌1, … , 𝑌𝑖−1, 𝑋) = 𝑔(𝑌𝑖−1, 𝑠𝑖 , 𝑐𝑖) (1)

 𝑠𝑖 = 𝑓(𝑠𝑖−1, 𝑌𝑖−1, 𝑐𝑖) (2)

 𝑐𝑖 = ∑ 𝛼𝑖𝑗ℎ𝑗
𝑇𝑥
𝑗=1 (3)

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖) =

exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)
𝑇
k=1

 (4)

 𝑒𝑖𝑗 = 𝑎(𝑠𝑖−1, ℎ𝑗) (5)

In Attention mechanism, the conditional probability is

defined as Eq. (1). 𝑠𝑖 is the hidden state of the RNN in the

decoder at time i in Eq. (2), and 𝑐𝑖 represents the context vector

at time i. In the traditional Encoder-Decoder structure, the

encoder encodes an input sequence X into a fixed-length context

vector c. c is used as the initial vector to initialize the decoder

model and predict output sequence 𝑌1. In addition, the decoder

model use context vector c and 𝑌𝑡−1 decoding to get the 𝑌𝑡 at

time t, and values in Eq. (3) are weighted. In Eq. (4), i indicates

the i -th word of the encoder, and ℎ𝑗 indicates the hidden vector

of the j -th word of the encoder; namely, the hidden state of the

RNN in the encoder at time j. In addition, 𝛼𝑖𝑗 indicates the

weight between the j -th word of the encoder and the i -th word

of the decoder. Furthermore, 𝛼𝑖𝑗 is a softmax model; its output

is the sum of the probability whose value is 1; 𝑒𝑖𝑗 ndicates an

alignment model, and this model is used to measure the

influence of the position of the j -th word of the encoder on the

position of the i -th word of the decoder in Eq. (5). There are

many methods to calculate 𝑒𝑖𝑗 and different calculation

methods represent different Attention mechanism such as soft

Attention, hard Attention, global Attention, local Attention and

so on. The simplest and most common alignment model is the

dot product.

𝑎(𝑠𝑖−1, ℎ𝑗) = {

𝑠𝑖−1⃗⃗ ⃗⃗ ⃗⃗ ⃗
⊺
ℎ⃗ 𝑑𝑜𝑡

𝑠𝑖−1⃗⃗ ⃗⃗ ⃗⃗ ⃗
⊺
𝑊ℎ⃗ 𝑤𝑒𝑖𝑔ℎ𝑡

 (6)

Eq. (6) contains different kinds of 𝑒𝑖𝑗 which indicates the

degree of alignment between the source and the target word.

Common alignment calculations are dot product and weight,

which are the most general. After completing the above

calculation, we can get the alignment vector 𝑎𝑖,𝑗 , namely,

𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 , ℎ𝑠
̅̅̅), which is the weight of the context vector. Then,

context vector 𝑐𝑖 can be obtained by weighted averaging, and

we are able to get results of Y.

Fig. 2.Attention Mechanism.

III. DEFECT PREDICTION VIA SELF-ATTENTION MECHANISM

In this Section, we elaborate our proposed DPSAM

approach that can generate features from programs and predict

defects. In order to build and evaluate our model, we mapped

target programs into ASTs and split the dataset into training

data and testing data. To uniform preprocessing steps with state

of the art methods for comparison, we also mapped token

vectors into integer vectors. We used integer vectors to train

DPSAM, attain effective features, and predict buggy

automatically from the training dataset. Our proposed approach

contained four major steps as illustrated in Fig. 3:

1. Input source code file

2. Parsing source code into AST tokens

3. Mapping tokens vector to integer vector

4. DPSAM generates semantic features and predict defects

automatically

Fig. 3. Overview of our proposed approach.

 Parsing Source Code

There are many types of granularities for the symbol for

software programs such as character-level, token-level, nodes

on ASTs, and so on. [17] proves nodes on ASTs are good

granularity. Therefore, in order to attain effective input features,

we selected the proper granularity from ASTs. We used open

source tools to transfer source code into ASTs to build program

representation[54]. Referring to other works [10][12], we

selected three main types of nodes as depicted in TABLE I:

⚫ Method invocations and class instance creations: we

record their method names or class names.

⚫ Declaration nodes: we record their node types.

⚫ Control-flow nodes: we also record their node types.

164

TABLE I. THE SELECTED AST NODES
Method invocations and class instance creations

ClassOrInterfaceDeclaration MethodDeclaration

Declaration nodes

AnnotationDeclaration AnnotationMemberDeclaration

ConstructorDeclaration EnumDeclaration

FieldDeclaration ImportDeclaration

InitializerDeclaration
Control-flow nodes

AssertStmt BlockStmt

BreakStmt CatchClause

ContinueStmt DoStmt

ENAplicitConstructorInvocationStmt ENApressionStmt

ForeachStmt ForStmt

IfStmt LabeledStmt

ReturnStmt SwitchEntryStmt

SwitchStmt SynchronizedStmt

ThrowStmt TryStmt

WhileStmt

 Data Preprocessing

1) Encoding Tokens

Many machine learning or deep learning models require

input data in the form of integer vectors. Many methods exist to

represent text, which is referred to as word representation.

Word representation can convert the text into a computer

readable output. Bag-of-Words(BoW) , Vector Space Model,

and TF-IDF are common word representation methods.

However, these methods have difficulty in presenting semantic

in programs. For example, high dimension and high sparsity are

two weaknesses of BoW [55]. These weaknesses take a great

quantity of space and are not able to present the syntactic of

programs. Therefore, we used token mapping to represent

words to obtain semantic from programs effectively.

We built a map between integers and tokens and encoded

token vectors to integer vectors. Different class names, method

names, and node types were mapped to different numbers

starting from 1. We could get integer vectors converted from

token vectors after this process. In addition, the order of the

tokens remained unchanged, and the structure information of

the program was retained. We filtered out AST nodes that were

not frequently used since these AST nodes may be designed for

specific files and were difficult to generalize to other files. This

technique is a common practice in the natural language

processing (NLP) research field [56].

2) Handling Imbalance

Because the number of clean instances exceeded

considerably the number of buggy instances in software defect

data, the imbalanced data reduced the performance of our

model [57]. Two methods can solve this problem in training

data. The first method called downsampling is reducing the

number of instances in the majority class, which could lead to

information loss. The second method called oversampling

includes increasing the number of instances in the minority

class by duplicating buggy instances; we used this second

method. Consequently, we were able to obtain a balanced

dataset.

 Training Self-Attention Mechanism and Predict Defect

After completing the data preprocessing, we could use

models to extract features. The model we used in our proposed

approach was self-attention mechanism, which is widely used

in NLP research, especially in machine translation. Self-

Attention mechanism differs from traditional Attention

mechanism because traditional Attention mechanism calculates

the base of hidden states of the source and the target to obtain

the dependencies on each word of the source and each word of

the target. This method ignores the dependencies on words of

the source or the target. However, Self-Attention works on the

source and the target, and also gets the dependencies on words

of the source or the target, respectively. It can obtain the

dependencies not only on the words of the source and the target,

but also on words of the source or the target. Therefore, it is

able to capture syntactic features or semantic features between

words in sentences. Furthermore, it is better at capturing the

internal correlation of data or features and is able to extract

important features of data quickly. Therefore, we used Self-

Attention mechanism to extract features for defect prediction.

Fig. 4. Multi-head Attention architecture.

Self-Attention mechanism was implemented using scaled dot-

product Attention unit. Fig. 4 presents a multi-head Attention

architecture, and the labeled parts are Scaled dot-product Attention

units. First, the inputs are linearly transformed into Q, K, and V,

respectively. Q indicates query, K indicates key, and V indicates value.

Q, K, and V are all converted from the inputs; however, the weights of

the linearly transformed matrix are different.

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (7)

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂 (8)

The expression for scaled dot-product Attention is in Eq. (7)

and it is the weighted expression equation. Scaling is used to

prevent excessive input from making training unstable, and

softmax is used to normalize its results into probability

distributions. Mask is used to mask future information to ensure

time alignment. Its output is a weighted result of V. 𝑑𝑘 indicates

the dimension of a Q and K vector. In Fig. 4, Q, K, and V make

a linear transformation, and then enter the scaled dot-product

Attention. In Eq. (8), multi-head Attention makes different

projections for Q, K, and V for h times. ℎ𝑒𝑎𝑑𝑖 is equal to

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) . 𝑊𝑖

𝑄
 belongs to 𝑅𝑑𝑚𝑜𝑑𝑒𝑙∗𝑑𝑘 ;

𝑊𝑖
𝐾 belongs to 𝑅𝑑𝑚𝑜𝑑𝑒𝑙∗𝑑𝑘 ; 𝑊𝑖

𝑉 belongs to 𝑅𝑑𝑚𝑜𝑑𝑒𝑙∗𝑑𝑣 . The

parameter 𝑊 is different every time when Q, K, and V make

linear transformations. Then we concat the results of scaled dot-

product Attention for h times and conduct linear transform

again to obtain the result of multi-head Attention. Because the

multi-head Attention calculates for h times not only once, the

165

model can learn relevant information in different representation

subspaces.

Attention mechanism completed feature extraction and

generated new features. Then, we connected a pooling layer to

reduce the dimensionality of intermediate representations and

provide additional robustness. Considering the whole defect

prediction process time, we did not connect classifiers such as

logistic regression to get results when obtaining new features.

We connected a sigmoid layer to convert the score for each

word into a probability value. In the structure, our model was

able to extract the semantic of programs and predict defects

automatically. In addition, in order to have good feature

extraction performance, model tuning is necessary. The training

hyper-parameters for Self-Attention mechanism are depicted in

TABLE II.

TABLE II. VALUES OF HYPER-PARAMETERS

Hyper-parameter Value

batch size 36

optimization Adam

loss function Binary crossentropy

dropout 0.5

embedding dimension 20

multi-head number 3

IV. EXPERIMENT AND DISCUSSION

 Dataset

We used open source data from the PROMISE dataset and

chose 7 Java projects as our source code [58]. All of the data

were labeled as clean or buggy. Furthermore, most code were

accessible from Github. As depicted in TABLE III, the buggy

rates of the projects had a minimum value of 22.4% and a

maximum value of 58.2%. Furthermore, TABLE IV reveals

that the file numbers of projects ranged from 108 to 964.

TABLE III. SUMMARY of PROMISE DATASET

Dataset Description Avg File Avg Buggy (%)

camel Enterprise integration framework 814 22.4

log4j Logging library for Java 150 58.2

lucene Text search engine library 269 54.2

poi Java library to access Microsoft format files 344 51.3

synapse Data transport adapters 211 25.5

Xalan A library for transforming NAML files 830 54.3

Xerces NAML parser 493 38.9

TABLE IV. DATASET VERSIONS

Dataset Version Dataset Version

camel 1.2 1.4 1.6 synapse 1.0 1.1 1.2

File number 607 871 964 File number 157 222 256

Buggy file 216 145 188 Buggy file 16 60 86

Buggy (%) 35.6 16.6 19.5 Buggy (%) 10.2 27.0 33.6

log4j 1.0 1.1 1.2 Xalan 2.4 2.5 2.6 2.7

File number 134 108 204 File number 723 803 885 909

Buggy file 34 37 189 Buggy file 110 387 411 898

Buggy (%) 25.4 34.3 92.6 Buggy (%) 15.2 48.2 46.4 98.8

lucene 2.0 2.2 2.4 Xerces 1.2 1.3 1.4

File number 194 274 339 File number 440 453 588

Buggy file 91 144 203 Buggy file 71 69 437

Buggy (%) 46.9 52.6 59.9 Buggy (%) 16.1 15.2 74.3

poi 1.5 2.0 2.5 3.0

File number 237 314 385 442

Buggy file 141 37 248 281

Buggy (%) 59.5 11.8 64.4 63.6

 Evaluation Metrics

In this paper, we plan to use four metrics, including

accuracy, precision, recall, and F1 score, which are widely used

in research related to machine learning and deep learning

[10][12][59][60]. Accuracy is the common baseline to verify

performance for the classification problem. However, software

defect data has a data skew problem such as data imbalance,

where the number of clean instances outnumbers buggy

instances considerably. Therefore, we used the F1 score which

is widely adopted to evaluate model performance as metrics.

TABLE V is a confusion matrix table with 4 different

combinations of predicted values and actual values, including

true positive, true negative, false positive, and false negative

[61]. True positive is the number of predicted defective files

which are truly buggy. In contrast, false positive is the number

of predicted defective files which are clean. True negative is the

number of predicted non-defective files which are clean in fact,

whereas false negative is the number of predicted non-defective

files which are actually buggy.

Precision reflects the ability of classification models to

distinguish negative samples. The higher the precision, the

stronger the distinguishing ability for negative samples.

Furthermore, recall reflects the ability for distinguishing

positive samples. F1 score combines both of them. Therefore,

F1 reflects the robustness of classification models. The higher

the value of all the metrics, the better.

 Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 =

𝑁𝑏→b

 𝑁𝑏→𝑏+𝑁𝑐→𝑏
 (9)

 Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 =

𝑁𝑏→𝑏

 𝑁𝑏→𝑏+𝑁𝑏→𝑐
 (10)

 F1 score =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (11)

TABLE V. CONFUSION MATRIX

 Actual Values: Positive Actual Values: Negative

Predicted Values: Positive True Positive False Positive

Predicted Values: Negative False Negative True Negative

 Baseline Methods

We compared our proposed DPSAM approach with the

following baseline methods in defect prediction displayed in

TABLE VI.

⚫ DBN: the state-of-the-art method which employs DBN

on source code to extract semantic features and use DBN-

learned features into classifier models such as Logistic

Regression or Naive Bayes for prediction [12].

⚫ DP-CNN: the state-of-the-art method which employs

CNN on source code to extract semantic features and use

CNN-learned features into Logistic Regression for

prediction [10].

⚫ DP-CNN+: an extended version of DP–CNN proposed by

us to complete CPDP performance not in DP-CNN,

which use CNN-learned features into Logistic Regression

or Naive Bayes for prediction.

Because there is no result of CPDP in DP-CNN+, we

implemented DP-CNN to get the baseline method and complete

the experiment data. When we implemented DP-CNN+, we

used the same network architecture and parameter. We followed

the same procedure to preprocess source code, including

166

parsing program, encoding tokens, and handling imbalance. In

DP-CNN+, we used logistic regression and naive Bayes for

defect prediction. In addition, to save classifier training time,

we did not connect the classifier, but used the pooling layer and

sigmoid layer to calculate the probability of buggy

automatically in DPCNN+ and DPSAM.

TABLE VI. THE DESCRIPTION OF FOUR DIFFERENT MODELS

Models Classifier Method name

DBN Logistic Regression DBN-LR

DBN Naive Bayes DBN-NB

DP-CNN Logistic Regression DPCNN-LR

DP-CNN+ Logistic Regression DPCNN+LR

DP-CNN+ Naive Bayes DPCNN+NB

DP-CNN+ NA DPCNN+

DPSAM NA DPSAM

 Experimental Result

In our experiments, we compared our proposed approach

with deep learning models, including DBN and CNN. The

experimental results revealed the performance for software

defect prediction in accuracy, precision, recall, and F1 score.

There are two kinds of defect prediction: WPDP and CPDP. In

this section, we demonstrate defect prediction results in both

WPDP and CPDP.

1) Within-Project Defect Prediction (WPDP)

The performance of DPSAM are displayed from TABLE

VII to TABLE X. The datasets of DBN may contain experiment

results because it implemented cross version defect prediction.

Therefore, we selected the results demonstrating the best

performance, which is indicated by a star (*) in TABLE VII.

However, the average performance is the value of the original

paper. DP-CNN is missing results of three datasets, including

ant, ivy, and log4j. In addition, only one metric was used to

record the performance of the results; namely, F1-score in DBN

and DP-CNN. We marked the missing data as NA.

First, discussing with F1 score, the average performance of

our proposed approaches was 70%. As depicted in TABLE VII,

DPSAM achieved 16.8% performance improvement compared

to the average performance of DBN, achieved 14.4%

performance improvement compared to DP-CNN, and achieved

56.5% performance improvement compared to the average

performance of DP-CNN+. Referring to the original paper,

parameters of DP-CNN were variable when constructing the

feature extraction model. However, we implemented DP-

CNN+ with consist parameters. This may explain performance

not being as good as that of DP-CNN.

As for the other metrics, such as accuracy, precision, and

recall, our proposed approach achieved performance

improvement 1.38 times higher than the average accuracy of

DP-CNN+. However, the precision of our proposed approach

was not as good as the average precision of DP-CNN+. Recall

of DPSAM was 2.08 times higher than the average recall of DP-

CNN+. Precision reflects the ability of classification models to

distinguish negative samples. The higher the precision, the

stronger the distinguishing ability for negative samples. Recall

reflects the distinguishing ability in positive samples. In defect

prediction, positive means the data is buggy and vice versa.

Finding out files that contain defects is more important than

predicting files that are clean. Therefore, the performance of

DPSAM was better than that of DP-CNN+. The experimental

results demonstrated that our proposed approach was useful for

WPDP. Our proposed approach outperforms the four metrics to

varying degrees.

TABLE VII. F1 SCORES IN WPDP

F1 score
DBN

-LR*

DBN-

NB*

DPCNN

-LR

DPCNN

+LR

DPCNN

+NB

DPCNN

+
DPSAM

camel 59.8 48.1 50.8 16.7 32.9 29.1 38.9

log4j 68.2 72.5 NA 40.2 43.5 49.0 97.9

lucene 63.0 73.8 76.1 67.4 50.3 75.6 75.6

poi 78.3 77.7 78.4 64.8 52.2 56.3 78.2

synapse 54.1 57.9 55.6 45.0 55.3 49.4 59.0

Xalan 56.5 45.2 69.6 50.8 54.1 45.7 99.9

Xerces 47.5 38.0 37.4 36.8 23.9 1.9 41.5

Average 61.1 59.0 61.3 46.0 44.6 43.9 70.1

TABLE VIII. Accuracy in WPDP

Accuracy
DBN

-LR

DBN

-NB

DPCNN-

LR

DPCNN+

LR

DPCNN+

NB
DPCNN+ DPSAM

camel

NA NA NA

77.5 75.0 78.0 66.7

log4j 27.1 29.7 33.9 95.8

lucene 62.9 55.7 60.8 60.8

poi 61.9 56.2 58.9 64.2

synapse 72.0 73.2 33.1 65.0

Xalan 34.1 37.1 29.7 99.9

Xerces 48.5 43.3 36.2 48.8

Average 54.9 52.9 47.2 71.6

TABLE IX. PRECISION IN WPDP

Precision
DBN

-LR

DBN-

NB

DPCNN-

LR

DPCNN+

LR

DPCNN+

NB
DPCNN+ DPSAM

camel

NA NA NA

32.3 35.6 41.2 30.7

log4j 94.0 94.5 93.8 95.8

lucene 72.3 78.9 60.8 60.8

poi 79.4 86.8 88.5 64.2

synapse 67.4 63.6 33.2 48.9

Xalan 100.0 100.0 100.0 99.9

Xerces 87.5 87.9 100.0 78.7

Average 76.1 78.2 73.9 68.4

TABLE X. RECALL IN WPDP

Recall
DBN

-LR

DBN-

NB

DPCNN-

LR

DPCNN+

LR

DPCNN+

NB
DPCNN+ DPSAM

camel

NA NA NA

11.2 30.5 22.5 52.9

log4j 25.5 28.3 33.2 100.0

lucene 63.1 36.9 100.0 100.0

poi 54.8 37.4 41.3 100.0

synapse 33.7 48.8 96.5 74.4

Xalan 34.0 37.1 29.6 100.0

Xerces 23.3 13.8 1.0 28.1

Average 35.1 33.3 46.3 79.3

2) Cross-Project Defect Prediction(CPDP)

CPDP means training data and testing data are located in

different projects. We used the last version in every dataset as

testing data and older versions as training data. For example, in

the camel dataset, our training data were 1.2, and 1.4, and

testing data was 1.6; in CPDP, training data were the same;

however, testing data was 1.2 from the log4j dataset, 2.4 from

the lucene dataset, and so on. We used 7 Java projects as our

source code. Therefore, for the 7 datasets multiplied by 4

metrics, there was 28 tables in total. To save layout and increase

legibility, we consolidated the experiment results from TABLE

XI to TABLE XV.

DBN did not verify all the datasets in CPDP. For example,

167

when the ant dataset served as training data, only the results that

used camel dataset and poi dataset as testing data were available.

Therefore, we indicated this with a star (*) in TABLE XI. There

was no result of CPDP in DP-CNN [10] and no accuracy,

precision and recall result for CPDP in DBN [12]; therefore, we

marked the missing data as NA. First, regarding F1 score,

average performance of the proposed methods was 71.9%. As

depicted in TABLE XI ,we can perceive that, DPSAM achieved

23% performance improvement compared to DBN, and

achieved 60% performance improvement compared to average

DP-CNN+ performance. In addition, the performance of other

methods was inconsistent in different datasets; however, our

proposed approach maintained the performance in different

datasets. Obviously, DPSAM is a stable model. As for the other

metrics, our proposed approach achieved performance

improvement 1.29 times higher than the average accuracy of

DP-CNN+. Although the precision of our proposed approach is

not as good as the average precision of DP-CNN+, recall of

DPSAM was 2.14 times higher than the average recall of DP-

CNN+. The phenomenon and reason were as mentioned earlier

for WPDP. Therefore, it can be concluded that the performance

of DPSAM was better than DP-CNN+.

We set a baseline where the model was applicable to a tested

dataset if the F1 score was above 70%. For each dataset,

TABLE XV reports the number of the other datasets to which

the corresponding models can be applied. Our proposed

approach improved the general applicability of prediction

models and was more applicable than other methods. Each

dataset was successfully applicable to at least 3 other datasets

and some of them were even applicable to 4 other datasets.

Generally, the performance of CPDP was poor because feature

distribution differed between the source projects and the target

projects. Altogether, our proposed approach was more reliable

and more accurate than DBN and DP-CNN models.

Furthermore, our proposed approach improved performance in

CPDP.

 Observation and Discussion

Defect prediction faces two main problems in the twenty-

first century. The first problem relates to building a precise

prediction model for new projects or projects having less

historical data. Therefore, many CPDP models have been

proposed. Our proposed approach overcame the first problem.

The second question relates to applying defect prediction

models in industry. Fortunately, numerous studies, including

case studies and proposed practical applications have been

conducted. Rahman et al. [62] demonstrated that defect

prediction was able to help prioritize warnings reported by

static bug finders. Another application involved using defect

prediction results to prioritize or select test cases, such as saving

testing cost in regression testing.

In addition, testing in system development life cycle (SDLC)

helps developers to ensure functionality and reliability of

software systems. However, it accrues considerable software

development costs. Therefore, having a good testing strategy to

find and fix defects is crucial for any industry. Predicting buggy

files, modules, or functions supports managing the limited test

resources and avoid releasing software with critical defects. Our

proposed approach can predict buggy files in the system.

Therefore, accurate prediction of defect‐prone files aids

developers to direct test efforts, reduce costs, and improve the

software testing process by focusing on defect-prone files.

Our proposed approach is able to predict buggy files in the

overall system automatically. Therefore, developers or

maintenance personnel can understand which files are defect‐
prone and test these files first in the testing phase. The test phase

includes white box testing and black box testing. In white box

testing, developers can use the AST tokens parsed by our

proposed approach to understand the structure and process of

the program. This method supports developers in writing test

cases. In black box testing, developers are able to allocate more

testing effort to the buggy files and reduce testing effort on the

clean files. This approach can aid in reducing time consumption

in black box testing. Therefore, our proposed approach can help

reduce errors in industrial applications, reduce overall testing

time, and avoid outflow of defects to ensure product quality.

TABLE XI. F1 SCORE IN CPDP.

F1 SCORE
DBN-

LR/NB*

DPCNN

+LR

DPCNN

+NB
DPCNN+ DPSAM

camel NA 42.6 44.1 40.1 78.8

log4j 69.2 49.0 46.0 50.6 71.5

lucene 58.4 65.1 48.4 73.1 73.1

poi 51.4 52.4 48.2 48.5 72.9

synapse 66.1 33.8 36.7 39.7 69.2

xalan 49.0 50.3 50.0 46.3 74.8

xerces 57.2 29.4 28.9 20.7 63.2

Average 58.6 46.1 43.2 45.6 71.9

TABLE XII. ACCURACY IN CPDP.

Accuracy
DBN-

LR/NB

DPCNN

+LR

DPCNN

+NB
DPCNN+ DPSAM

camel

NA

51.3 47.2 45.3 77.3

log4j 56.6 55.3 58.2 65.1

lucene 64.0 52.3 63.0 63.0

poi 52.9 52.5 52.2 66.8

synapse 42.5 45.1 47.4 67.2

xalan 56.0 56.4 55.9 70.0

xerces 43.9 45.2 41.1 58.5

Average 52.5 50.6 51.9 66.8

TABLE XIII. PRECISION IN CPDP.

Precision
DBN-

LR/NB

DPCNN

+LR

DPCNN

+NB
DPCNN+ DPSAM

camel

NA

84.0 86.0 85.7 82.9

log4j 73.1 73.9 72.6 61.0

lucene 72.3 74.9 63.0 63.0

poi 71.6 74.9 73.2 63.0

synapse 79.5 79.8 80.5 76.3

xalan 73.0 73.8 72.3 64.8

xerces 73.6 79.4 72.6 65.1

Average 75.3 77.5 74.3 68.0

TABLE XIV. RECALL IN CPDP.

Recall
DBN-

LR/NB

DPCNN

+LR

DPCNN

+NB
DPCNN+ DPSAM

camel

NA

35.8 31.0 27.2 76.4

log4j 40.3 37.1 42.9 94.7

lucene 64.4 40.0 100.0 63.0

poi 47.7 39.6 40.5 95.5

synapse 21.8 26.0 26.6 67.2

xalan 37.3 36.5 32.0 87.7

xerces 21.7 19.3 15.4 73.5

Average 38.4 32.8 40.7 79.7

168

TABLE XV. APPLICABLE DATASET IN CPDP

Applicable

dataset

DBN-

LR/NB

DPCNN

+LR

DPCNN

+NB
DPCNN+ DPSAM

camel 1 0 0 0 3

log4j 0 0 0 0 4

lucene 0 3 0 4 4

poi 0 0 0 0 4

synapse 0 0 0 0 4

Xalan 0 0 0 0 4

Xerces 0 0 0 0 3

Average 0.1 0.4 0.0 0.6 3.7

V. CONCLUSIONS

Assuring the quality of projects is not only necessary but

also increases efficiency when developing software. Generally,

developers might need to find the main causes of these detected

faults and then eliminate them in order to reduce the occurrence

of faults and the risks of software-failure. For instance, a cause

and effect diagram (CED), also called the fishbone diagram, is

typically designed to sort and determine the potential causes of

the observed problems and effects [63]. Practically, in order to

identify the causes, engineers and project managers have to

group the causes into some major categories, such as the

product, process, people, development environment, tool,

training, etc. The root causes analysis can be implemented and

proposed solutions (i.e., details of fault prevention activities,

responsible person, implementation start/end dates, etc.) can

also be developed through some brainstorming meetings or

direct suggestions or instructions from senior engineers or

managers. In addition, fault history classifications or change

history classification will usually be created, maintained, and

updated [64].

Software defect prediction is a skill in software engineering

which can add reliability to programs. In this paper, we propose

DPSAM as an approach to predict defects. We use self-

attention mechanism to extract feature from programs. Our

proposed approach was able to save the semantic of programs

and predict defects automatically. We implemented our

experiment on 7 open source datasets which are also used in [12]

and [10]. In WPDP, DPSAM achieved 16.8% and 14.4%

performance improvement compared to state-of-the-art DBN-

based method and DP-CNN-based method in F1 score,

respectively. We verified our experiment in more data sets and

enhanced the reliability of our proposed approach. The features

of source projects and target projects often have different

distributions, so it is challenging to attain good performance in

CPDP. However, in CPDP, DPSAM achieve 23% and 60%

performance improvement in F1 score compared to DBN and

DP-CNN+ respectively. In addition, compared to state-of-the-

art methods, our proposed approach demonstrated the best

performance and was not the most time-consuming. Therefore,

our proposed approach was more efficient. Altogether, the

quality of software would be significantly increased and the risk

of project-failure can be greatly reduced if defects are detected

as early as possible.

ACKNOWLEDGMENT

 The work described in this paper was supported by

Ministry of Science and Technology, Taiwan, under Grants

MOST 108-2221-E-007-033-MY3 and MOST 110-2221-E-

007-035-MY3.

REFERENCES

[1] W.E. Wong, X. Li, and P.A. Laplante, “Be more familiar with

our enemies and pave the way forward: A review of the roles

bugs played in software failures,” Journal of Systems and

Software, vol. 133, pp. 68-94, 2017.

[2] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis

of the efficiency of change metrics and static code attributes for

defect prediction,” Proceeding of 2008 ACM/IEEE 30th

International Conference on Software Engineering (ICSE’08),

pp. 181–190, 2008.

[3] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu,

“Dictionary learning based software defect prediction,”

Proceedings of the 36th International Conference on Software

Engineering (ICSE), pp. 414–423, 2014.

[4] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect

prediction for imbalanced data,” Proceedings of the 37th

international Conference on Software Engineering (ICSE),Vol.

2, pp. 99–108, 2015.

[5] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in

Proceedings of the 35th International Conference on Software

Engineering, pp. 382–391,2013.

[6] J. Nam, “Survey on software defect prediction,” Department of

Computer Science and Engineering, The Hong Kong University

of Science and Technology, Tech. Rep, 2014.

[7] X. Bai, H. Zhou, and H. Yang, “An HVSM-based GRU

Approach to Predict Cross-Version Software Defects,”

International Journal of Performability Engineering, vol. 16,

no. 6, pp. 979–990, June 2020.

[8] Y. Li, W.E. Wong, S.Y. Lee, and F. Wotawa, “Using tri-relation

networks for effective software fault-proneness

prediction,” IEEE Access, vol. 7, pp. 63066-63080, 2019.

[9] G. E. Hinton and R. R. Salakhutdinov, “Reducing the

dimensionality of data with neural networks,” Science’06,

Vol.313, pp.504–507,2006.

[10] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction

via convolutional neural network,” Proceedings of 2017 IEEE

International Conference on Software Quality, Reliability and

Security, Prague, Czech Republic, pp. 318–328, 2017.

[11] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J. Grundy, A. Ghose, T.

Kim, and C.-J. Kim, “A deep tree based model for software

defect prediction,” [Online]. Available: https://arxiv.org/abs/

1802.00921. Accessed: Mar. 7, 2018.

[12] S. Wang, T. Liu and L. Tan, “Automatically learning semantic

features for defect prediction,” Proceedings of the 38th

International Conference on Software Engineering, Austin, TX,

USA, pp.297-308,2016.

[13] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose

“Automatic feature learning for vulnerability prediction,”

[Online]. Available: https://arxiv.org/abs/1708.02368. Accessed:

Mar. 7, 2018.

[14] M. White, C. Vendome, M. Linares-Va ́squez, and D.

Poshyvanyk. “Toward deep learning software repositories,”

Proceedings of the 12th Working Conference on Mining

Software Repositories, Florence, Italy, pp. 334–345,2015.

[15] H. K. Dam, T. Tran, T. Pham, “A deep language model for

software code,” [Online]. Available: https://arxiv.org/abs/

1608.02715. Accessed: Mar. 7, 2018.

[16] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin, “Building

program vector representations for deep learning,” in

International Conference on Knowledge Science, Engineering

and Management, Springer, pp. 547-553, 2015

[17] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the

naturalness of software,” Proceedings of the 34th International

Conference on Software Engineering, Zurich, Switzerland, pp.

837–847, 2012.

[18] C. J. Maddison, and D. Tarlow, “Structured generative models

169

https://arxiv.org/abs/

of natural source code,” [Online]. Available: https:// arxiv.org/

abs/1401.0514. Accessed: Mar. 7, 2018.

[19] J. Nam, W.Fu, S. Kim, T.Menzies, and L.Tan. “Heterogeneous

defect prediction,” IEEE Transactions on Software Engineering,

Vol. 44, no.9, pp.874–896, 2018

[20] F. Li, Y. Qu, J. Ji, D. Zhang, and L. Li, “Active learning

empirical research on cross-version software defect prediction

datasets,” International Journal of Performability Engineering,

vol. 16, no. 4, pp.609-617, April 2020.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”

Proceedings of the Conference on Neural Information

Processing Systems (NIPS), Long Beach, CA, USA, 2017.

[22] M. T. Luong, H. Pham, and C. D. Manning, “Effective

approaches to attention-based neural machine translation,”

Proceedings of the Conference on Empirical Methods in

Natural Language Processing, 2015

[23] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov,

R. Zemel, and Y. Bengio, “Show, attend and tell: neural image

caption generation with visual attention,” [Online]. Available:

https://arxiv.org/abs/1502.03044. Accessed: Mar. 7, 2018.

[24] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent

model of visual attention,” Advances in Neural Information

Processing Systems (NIPS), 2014.

[25] Y. C. Huang, K. L. Peng, and C. Y. Huang, “A history-based

cost-cognizant test case prioritization technique in regression

testing,” Journal of Systems and Software, Vol. 85, Issue 3, pp.

626–637, March 2012.

[26] C. Y. Huang, C. S. Kuo, and S. P. Luan, “Evaluation of bounded

generalized pareto model for the analysis of fault distribution of

open source software,” IEEE Trans. on Reliability, Vol. 63, No.

1, pp. 309-319, March 2014.

[27] S. P. Luan and C. Y. Huang, “An improved pareto distribution

for modeling the fault data of open source software,” Software

Testing, Verification and Reliability, Vol. 24, Issue 6, pp. 416–

437, Sept. 2014.

[28] H. H. Maurice, “Elements of software science (operating and

program-ming systems series),” 1977.

[29] T. J. McCabe, “A complexity measure,” IEEE Transactions on

Software Engineering, Vol: SE-2 ,No. 4, pp. 308–320, 1976.

[30] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object

oriented design,” IEEE Transactions on Software Engineering,

Vol. 20, No. 6, 1994.

[31] M. H. Halstead, “Elements of software science.” Elsevier,

North-Holland, 1977.

[32] B.T. Compton, and C. Withrow, “Prediction and control of ada

software defects,” Journal of Systems and Software, Vol. 12,

No. 3, pp. 199-207, 1990.

[33] A. E. Hassan. “Predicting faults using the complexity of code

changes,” Proceedings of IEEE 31st International Conference

on Software Engineering, Vancouver, BC, Canada ,pp. 78–88,

2009

[34] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In. “Micro interaction

metrics for defect prediction, ” Proceedings of the 19th ACM

SIGSOFT symposium and the 13th European conference on

Foundations of software engineering, pp. 311–321, 2011.

[35] J. Wang, B. Shen, and Y. Chen. “Compressed c4. 5 models for

software defect prediction,” Proceedings of the 12th

International Conference on Quality Software, Xi'an, China, pp.

13-16, 2012

[36] T.M. Khoshgoftaar and N. Seliya. “Tree-based software quality

estimation models for fault prediction,” Proceedings of Eighth

IEEE Symposium on Software Metrics , Ottawa, ON, Canada,
pp. 203-214, 2002.

[37] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,”

Proceedings of 35th International Conference on Software

Engineering (ICSE), pp.382–391,2013.

[38] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano. “On the

relative value of cross-company and within-company data for

defect prediction,” Empirical Software Engineering, 14(5), pp.

540–578, 2009.

[39] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun. “Deep learning

for just-in-time defect prediction.” Proceedings of the IEEE

International Conference on Software Quality, Reliability and

Security, Vancouver, BC, Canada, pp.17–26, 2015.

[40] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining:

Practical machine learning tools and techniques. Morgan

Kaufmann, 2016.

[41] A. Krizhevsky, I. Sutskever, and G. Hinton. “Imagenet

classification with deep convolutional neural networks”.

Communications of the ACM, Vol. 60, No.6, pp.84–90, 2017.

[42] Xu, L., Ren, J.S., Liu, C., and Jia, J. “Deep convolutional neural

network for image deconvolution,” Proceedings of the 27th

International Conference on Neural Information Processing

Systems, pp.1790–1798, 2014.

[43] S. Ren, K. He, R. Girshick, and J. Sun. “Faster R-CNN: Towards

real-time object detection with region proposal networks.” In

NIPS, 2015.

[44] A. Graves, A.-r. Mohamed, and G. Hinton, "Speech recognition

with deep recurrent neural networks," 2013 IEEE international

conference on acoustics, speech and signal processing, pp.

6645–6649, 2013

[45] K. Cho, B. V. Merrie ̈nboer, C. Gulcehre, D. Bahdanau, F.

Bougares, H. Schwenk, and Y. Bengio. “Learning phrase

representations using rnn encoder-decoder for statistical

machine translation.” Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP),

pp.1724–1734,2014.

[46] T. Mikolov, M. Karafia ́t, L. Burget, J. Cernocky`, and S.

Khudanpur. “Recurrent neural network based language model.”

In INTERSPEECH, pp. 1045–1048, 2010.

[47] J. Xu, L. Yan, F. Wang, and J. Ai, “A github-based data

collection method for software defect prediction,” Proceedings

of the 6th International Conference on Dependable Systems and

Their Applications (DSA),Harbin, China, pp.100–108, 2019.

[48] S. Hochreiter and J. Schmidhuber. “Long short-term memory.”

Neural computation, 9(8), pp.1735–1780, 1997.

[49] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jo ́zefowicz,

and S. Bengio., “Generating sentences from a continuous space.”

In Proceedings of the 20th SIGNLL Conference on

Computational Natural Language Learning, pp. 10-21, 2016.

[50] W. Ling, E. Grefenstette, K. M. Hermann, T. Kočiský, A. Senior,

F. Wang, and P. Blunsom, “Latent predictor networks for code

generation,” Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics, Vol. 1, pp. 599–609,

2016.

[51] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer,

“Summarizing source code using a neural attention model,”

Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics, Vol. 1, pp.2073–2083, 2016.

[52] P. Yin, and G. Neubig, “A syntactic neural model for general-

purpose code generation,” Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics, Vol.

1, pp. 440–450, 2017.

[53] K. Cho, B. V. Merriënboer, C. Gulcehre, D. Bahdanau, F.

Bougares, H. Schwenk, and Y. Bengio, “Learning phrase

representations using RNN encoder-decoder for statistical

machine translation,” Proceedings of the Empirical Methods in

Natural Language Processing (EMNLP), pp.1724–1734, 2014.

[54] “JavaParser,” [Online]. Available: https://github.com/

donnchadh/JavaParser/tree/master/JavaParser. Accessed: Mar.

7, 2018.

170

[55] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen,

“Predicting vulnerable software components via text mining.”

IEEE Transactions on Software Engineering, Vol. 40, No. 10,

pp. 993–1006, 2014.

[56] C. D. Manning and H. Schutze. Foundations of statistical

natural language processing. MIT press, 1999.

[57] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect

prediction for imbalanced data,” Proceedings of the 37th

International Conference on Software Engineering, Vol. 2, pp.

99–108, 2015.

[58] “PROMISE dataset,” [Online]. Available: http://openscience.

us/repo/defect/. Accessed: Mar. 7, 2018.

[59] D. M. W. Powers, “Evaluation: from precision, recall and f-

measure to roc, informedness, markedness and correlation,”

International Journal of Machine Learning Technology, Vol. 2,

No. 1, pp. 37–63, Dec. 2011.

[60] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A.

Bener. “Defect prediction from static code features: current

results, limitations, new approaches,” Automated Software

Engineering, 17(4), pp. 375–407, 2010.

[61] J. T. Townsend., “Theoretical analysis of an alphabetic

confusion matrix,” Psychonomic Journals, Vol. 9, No. 1, pp.

40–50, 1971.

[62] F. Rahman, S. Khatri, E.T. Barr and P. Devanbu,“ Comparing

static bug finders and statistical prediction,” Proceedings of the

2014 International Conference on Software Engineering, pp.

424–434, 2014.

[63] P. Jalote, Software Project Management in Practice, Pearson

Education, 2002.

[64] C. Ebert, R. Dumke, M. Bundschuh, and A. Schmietendorf, Best

Practices in Software Measurement, Springer, 2005.

171

