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Abstract—Domain Name System (DNS) is indispensable to
the daily operation of all Internet services, computer programs,
smartphones, etc. It has been commonly explored as a vantage
point for network monitoring. However, a fundamental question
that whether a DNS query originating from a querent is issued
by humans or software entities remains not deeply investigated.
Tackling such a question enables us to further passively discover
software entities that the querent uses from DNS traffic. In this
paper, we systematically perform querent-centric DNS modeling
and explore its application in passive software discovery. Through
in-depth measurement of real-world DNS traffic involving 4,398
querents, we develop an entropy-based method to distinguish
between human and non-human domain names, and propose a
community-based software discovery solution. The measurement
and experiments show that our methods can well characterize
the non-human and human DNS query behavior, and achieve
passive software discovery.

Index Terms—DNS modeling, DNS query pattern, passive
software discovery

I. INTRODUCTION

Domain Name System (DNS) plays an important role in
today’s Internet system [1], [2]. DNS is indispensable to the
daily operation of all Internet services, computer programs,
smartphones, etc. The reason is that it offers a fundamental
capability of mapping human-friendly domain names into
machine-readable IP addresses in a hierarchical and decen-
tralized way. More importantly, its functionality is far beyond
domain-IP mapping, since it has also been widely exploited
by content delivery networks (CDNs) and cloud services to
accelerate network performance.

Due to its prevalence as well as importance, DNS has been
commonly explored as a vantage point for network admin-
istrators to perform network monitoring. For example, the
Internet Service Provider (ISP) would detect and prevent the
spread of some malicious activities and worms by analyzing
the DNS queries and modifying the DNS security policy [3].
Meanwhile, DNS logs can also be used to detect the advanced
persistent threat (APT) [4]. On the other hand, DNS is also
exploited by attackers to discover vulnerabilities, such as
the well-known Kaminsky cache poisoning vulnerability [5],
stimulating the application of security protocols like DNSSEC
[6].
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Fig. 1. A typical scenario of our problem setting.

Despite being widely studied, a fundamental question that
whether a DNS query originating from a querent (i.e., an IP
address) is issued by humans or software entities remains not
deeply investigated. We term this question as querent-centric
DNS modeling. Tackling such a question enables us to further
explore which software entity a querent is using to issue the
observed DNS queries, i.e., passively discovering software
entities that the querent uses from DNS traffic.

For ease of presentation, we define domain names auto-
matically queried by software entities as non-human domain
names, and the remaining domain names queried with human
participation as human domain names. Fig. 1 shows a typical
scenario of our problem setting. In this figure, two querents
are sending DNS queries to the local DNS server. DNS
queries originating from both querents are issued by humans
and software entities (typically running on the background).
Strictly speaking, a DNS query issued by humans is eventually
issued by a software entity but relies on humans’ activities
(e.g., browsing) that trigger the software entity.

In this paper, we systematically perform querent-centric
DNS modeling and explore its cation in passive software
discovery. To achieve our research goals, we conduct two-
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fold efforts. First, to distinguish between human and non-
human domain names, we collected real-world DNS traffic
data and conducted in-depth analysis. In the measurement,
we find that the query time interval distributions of different
types of domain names are significantly different. Based on the
observation, we design an entropy-based algorithm to classify
domain names into human and non-human ones. Second, in
consideration of the DNS query characteristics for non-human
domain names, we propose a software discovery solution
based on detecting communities of non-human domain names
The proposed solution can automatically learn the correlation
between non-human domain names from the unlabeled traffic,
discover the presence of a certain software entity.

To the best of our knowledge, our work constitutes the
first effort towards querent-centric DNS modeling and its
application in passive software discovery. In summary, we
make the following contributions:

• We perform a measurement study of real-world DNS traf-
fic involving 4,398 querents, and quantify the differences
in terms of DNS queries’ temporal characteristics for
human and non-human domain names. An entropy-based
algorithm is designed to distinguish between human and
non-human domain names.

• We propose a software discovery solution based on
detecting communities of non-human domain names.
The proposed solution can automatically learn the cor-
relation between non-human domain names from the
unlabeled traffic, drastically lowering domain-software
labeling overhead.

• Through building the correlation matrix and the graph,
we detect correlated communities of domain names. We
employ the Louvain method to effectively find correlated
communities of domain names.

Roadmap. In Sec. II, we present real-world DNS query
characteristics. Sec. III models the human and non-human
queries. We review the literature in Sec. IV and conclude in
Sec. V.

II. UNDERSTANDING REAL-WORLD DNS QUERY
CHARACTERISTICS

In this section, based on real-world DNS traffic, we study
DNS query characteristics, namely, DNS query preference for
domain names and DNS query distribution of time intervals,
from spatial and temporal perspectives, respectively.

A. Real-world DNS Trace Preparation

The DNS trace used in our experiments was captured in a
major university in China. The DNS trace capturing process
was deployed and initiated on a Linux router using Tcpdump
on November 29, 2020, and lasted 45.75 hours. The resulting
dataset contains 4,398 IP addresses (i.e., querents) that queried
the university’s local DNS server for 81,756 unique domain
names, generating a total number of 13,630,080 DNS query
records. Note that, from the captured traces, we only resolve
DNS requests (exclusive of DNS responses) because we focus
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Fig. 2. Domain name ranking in terms of query times.

on querent-centric DNS query behavior, i.e., IP addresses I
query domain names Y at time T .

B. DNS Query Preference for Domain Names
To understand querent-centric DNS query behavior, an im-

mediate question arises. That is, from the spatial perspective,
are some domain names favored over others by querents in
terms of the number of queries?

To answer this question, we counted the number of queries
for each domain name, and sorted them according to the
number in descending order, as shown in Fig. 2. We see
that the number of queries for the top-ranked three domain
names is much larger than that for the subsequent lower-
ranked domain names. Surprisingly, the query times of the
10th to 50th domain names almost stay constant, indicating
the presence of something “uncommon” in the data. After
observing these domain names, we find that almost all of
their second-level domain names are douyincdn.com. This
finding reminds us that a set of fully qualified domain names
(FQDNs, domain names for specific computers, or hosts)
subordinate to registrant-level domain suffixes (i.e., a domain
suffix whose subdomains are all registered by the same orga-
nization) may be queried in a synchronized manner, thereby
inappropriate to be considered separately. Accordingly, we
shorten all the FQDNs to registrant-level domain suffixes,
count the number of queries for each shortened domain name,
and re-plot the results in Fig. 3. For example, qq.com is the
registrant-level domain of ts.qq.com, and thus all domain
names subordinate to qq.com are considered as only one
domain name, qq.com, along the X-axis of Fig. 3.

In order to visualize the proportion of queries for different
domain names, we also calculate and plot the Cumulative
Distribution Function (CDF) as follows:

FCDF (x) =

∑x
i=1 Query Times(Domain IDx)∑n
i=1 Query Times(Domain IDx)

. (1)

Fig. 3 shows the results. The top 5 registrant-level domain
names accounted for 55.6% of all the queries, and the top
30 registrant-level domain names accounted for 80.4% of
all the queries. The top 5 registrant-level domain names
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Fig. 3. Registrant-level domain name ranking in terms of query times.

in ascending ID order include douyincdn.com, qq.com,
pstatp.com, yximgs.com and huawei.com.

C. DNS Query Distribution of Time Intervals

Besides spatial preference, DNS queries tend to exhibit
temporal regularity because the queries are triggered due to
the combination of human and non-human behavior, both of
which are governed by some underlying patterns like human
daily routines and precoding computer programs. For example,
when opening a website, the browser will send DNS requests
to the local DNS server for resolving the website’s domain
names, and these domain names are likely to be queried soon
since people may visit the same website again in a short period
of time using the browser.

In order to visualize the temporal regularity of querying
each domain name, we calculate its probability distribution
of time intervals of the aggregated DNS queries originating
from all hosts in the network. Fig. 4. Specifically, we first
calculate the upper 90% quantile T of the DNS query time
intervals, uniformly divide the interval [0, T ] into 100 pieces
of smaller time intervals, and then calculate the DNS query
frequency within each piece. This calculation method allows
us to filter out DNS queries that may not be temporally
coherent due to significant interruption caused by machine-
on/off and software-up/down dynamics.

To our surprise, the DNS query frequency distribution over
time intervals significantly varies across domain names. How-
ever, we find that the distribution can be roughly divided into
three categories. The first category includes the domain names
whose DNS query frequency distribution follows a power law.
That is, the smaller the time interval is, the higher the DNS
query frequency, as is demonstrated in Fig. 4(a). The first
category includes the domain names that are very regularly
queried. Specifically, there is only one obvious peak value of
the DNS query frequency distribution over time intervals as in
Fig. 4(b). All the remaining domain names fall into the third
category, since their distributions do not reflect any significant
DNS query regularities, such as those in Fig. 4(c).

We believe that the driven power for the diversity of the
DNS query distribution of time intervals is the synthesis of hu-
man and non-human (i.e., software) network activities. Strictly
speaking, all DNS queries are sent by computer programs.
However, not all queries are triggered by humans. We call the
DNS queries triggered by humans human DNS queries, and
the queries automatically triggered by the software are called
non-human DNS queries. Accordingly, the domain names are
called human domain names and non-human domain names.
For example, a computer sends a DNS query to its local DNS
server for resolving the domain name of the Network Time
Protocol (NTP) server at regular time intervals to update the
time. The DNS query for the NTP server’s domain name is a
non-human query. If one visits a website, the DNS query for
the website’s domain name is a human query.

It is foreseeable that if a domain name is designed to be
queried by a computer program, it is likely for this domain
name to be queried at regular intervals (e.g., a ”while true
- sleep” loop to control the query pattern by the program.).
Compared with non-human DNS queries, the characteristics
of human DNS queries, depending on human behavior, will
be far more complicated. Fig. 4(a) and Fig. 4(b) demonstrate
the distributions of querying human and non-human domain
names, respectively.

On the other hand, if a domain name is designed to be
queried by humans, it will be queried at irregular time intervals
as demonstrated in Fig. 4(c). Even when such a human domain
name is meanwhile queried by computer programs, the query
time intervals will also tend to be irregular. Also, there may
be two different programs that use different frequencies to
query the same domain name, and their frequencies together
drive the resulting query time intervals. For example, in the
second figure of Fig. 4(c), there are two peak points where
X is greater than 0, corresponding to two query frequencies.
The above analysis indicates that the time intervals of DNS
queries for a certain domain name could be attributed to the
superposition of multiple human and non-human factors.

To further verify the above analysis, we conducted a special
experiment. Specifically, we collected the DNS traffic of a Win
10 computer in the idle state wherein no one operated the
computer, and then analyzed the collected traffic. Since no
one was operating the computer, there should be no human
DNS queries. After discarding domain names with less than
5 occurrences, we obtain DNS query records of 8 domain
names in total. Fig. 5(a) shows the time interval distribution
of 7 domain names. We see that the time intervals are very
concentrated, meaning regular query patterns for these domain
names. Fig. 5(b) shows the time interval distribution of the
remaining one domain name. We see that the time intervals
are uniformly distributed. This means that the domain name
is randomly queried by a computer program.

III. MODELING HUMAN AND NON-HUMAN DNS QUERY
BEHAVIOR

Next, we further study DNS query characteristics, with an
emphasis on modeling human and non-human DNS query
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(c) Category 3

Fig. 4. Three main categories of DNS query patterns. The frequency of Category 1 decreases as time interval increases. The time intervals of Category 2 are
mainly concentrated in one small cell. All the complicated patterns other than Category 1 and Category 2 belong to Category 3.
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Fig. 5. The frequency of DNS query time intervals of two domain names.
The data was collected on a Win 10 computer without human operation.

behavior in consideration of their differences, diurnal patterns,
and correlations.

A. Distinguishing between Human and Non-human Queries

To systematically characterize human and non-human DNS
queries, a method is needed to distinguish between the two

types of queries. A straightforward solution is to build a
dataset and train a model to classify them using machine
learning algorithms. Since the characteristics of the two types
of queries are quite different, it can be expected that such a
solution would achieve promising performance. Nevertheless,
our experience is that it is extremely difficult and labor
intensive, if not impossible, to accurately label a sufficiently
large number of training samples. The fundamental obstacle is
to concisely link a DNS query to a human’s interaction with
a computer program or just the computer program.

Therefore, we need a method that does not rely on training
samples, or only needs a small number of training samples,
to distinguish between the two types of DNS queries. Inspired
by our aforementioned observation that the DNS query time
interval distribution for human domain names is far more
complicated than that for non-human domain names, we use
the information entropy as a feature measuring the disorder
of the query time interval distribution to distinguish the two
types of queries. The entropy is calculated as follows:

Entropy = −
n∑

i=1

pi log2 pi, (2)

where pi represents the probability density function (i.e., the
frequency) of the ith time interval. Intuitively, the entropy of
querying human domain names will be larger than that of
querying non-human domain names.

Centering around the entropy feature, we propose Algorithm
1, entitled “non-human domain name filtering”, to identify
non-human domain names. The algorithm processes the DNS
traffic for each IP address, and consists of four steps.
Step 1. Data Denoising. The algorithm carries out a data
denoising operation to filter out the time intervals less than 10
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Algorithm 1 Non-human Domain Name Filtering
Input: DNS trace file (format: pcap)
Output: non-human domain names
1: output list = []
2: for each IP address do
3: for each domain name do
4: The intervals less than 10 seconds are discarded.
5: if the number of intervals < 45 then
6: Pass
7: m = Quantile(intervals,0.9)
8: Divide interval [0,m] into 100 parts, as d[0 : 100]
9: Calculate the interval frequency density on d

10: f = Normalize(d[1 : 100])
11: e = Entropy(f )
12: if e < 3 & domain name not in output list then
13: output list.append(domain name)
14: return output list

seconds and ignore the situations that the number of intervals
is too small. The reason for the occurrence of multiple DNS
queries for a domain name in a short period of time is normally
due to the program design that assures the DNS queries’
reliability, especially when the period of time is less than the
time to live (TTL) of the domain name. Therefore, many DNS
queries for a domain name occurring abruptly do not reflect the
querent’s real intention of queries, yet introducing additional
noises for our analysis.
Step 2. Frequency Counting. We calculate the upper 90%
quantile m of the time intervals, and divide the interval [0,m]
into one hundred cells uniformly, and then calculated the
sample frequency in each cell.
Step 3. Entropy Calculation. We remove the first cell, then
normalize the remaining 99 cells and calculate their entropy.
The reason why we remove the first cell is that, in some cases,
the data contains more than 10% large intervals, causing most
of the data fall into the first cell. In these cases, the entropies
are very small, but this does not mean that the domain names
are non-human ones.
Step 4. Decision Making. We judge whether the calculated
entropy value is less than a threshold. If the answer is positive,
we draw the conclusion that the domain name is a non-
human one. Our experience is that when the threshold is 3,
the performance of detecting non-human domain names will
be the best.

Leveraging the proposed method, 957 domain names with
more than 45 DNS query time interval cells are extracted from
81,756 domain names. Finally, 514 human domain names are
identified. To observe the performance of our algorithm, we
randomly select three domain names with different registrant-
level domain suffixes. The DNS query time interval distribu-
tions of these domain names are shown in Fig. 6. We observe
that these three randomly selected domain names have strong
regularity in terms of DNS query time intervals.

B. Comparing Diurnal Patterns across Domain Names

In addition to distinguishing between human and non-
human DNS queries, modeling the diurnal patterns of DNS
queries is also essential to understanding human and non-
human DNS query behavior. Intuitively, it is expected that,
for a certain domain, the number of aggregated DNS queries
across all querents would evolve as humans’ daily routines
proceed. However, the specific evolution patterns of different
domain names require further exploration.

To explore the evolution patterns, we divide a day into 24
one-hour cells, and count the number of DNS queries for target
domain names in each cell. Fig. 7(a) shows the number of
DNS queries over time for different target domain names, i.e.,
all domain names, human domain names, a particular domain
name init.push.apple.com, respectively. Note that the
horizontal axis of the coordinates represents the time of the
DNS queries, and we have standardized the time according
to China’s standard time, since the dataset was captured in
China.

Let us first look at the diurnal patterns of all domain
names in Fig. 7(a). The results show that there are more
DNS queries during the daytime than at night, and several
peaks appear occur during the off-work time and before bed.
This coincides with humans’ daily routines. When we further
look at the diurnal patterns of human and non-human domain
names in Fig. 7(b), we surprisingly find that there exhibits
significant diurnal pattern similarity between human and non-
human domain names.

The above finding reveals that there is a strong correla-
tion between the appearance of human and non-human DNS
queries. For example, when we do online shopping using our
mobile phones, the general operation is to open an app, search
the keywords in the app, and finally select the product to be
purchased. It is worth noting that when one opens the app, it is
likely that the app will automatically query its own non-human
domain names.

Fig. 7(a) and Fig. 7(b) represent dominating diurnal patterns.
There are also domain names that do not conform to such
a pattern. We manually examine the domain names with
more than 1,000 queries case by case, and find that more
than 95% of the domain names’ diurnal patterns are similar
to Fig. 7(b). But still, we find a small number of domain
names with different patterns, and Fig. 7(c) shows a particular
pattern of querying init.push.apple.com. This domain
name is classified as a non-human domain name by our non-
human domain name filtering algorithm. We observe that the
frequency of DNS queries for this domain name reaches a
peak at 7 a.m. We conjecture that people turn on their mobile
phones in the morning, leading to a surge of DNS queries.

To figure out the domain names that significantly deviate the
diurnal pattern resulting from all domain names (the overall
diurnal pattern), we calculated the KL divergence between the
diurnal pattern of each domain name with more than 1,000
queries and the overall diurnal pattern. The results show that
17 domain names with a KL divergence greater than 0.5, and
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Fig. 6. The DNS query patterns of three randomly selected non-human domain names detected by Algorithm 1 with different registrant-level domain suffixes.
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Fig. 7. The diurnal DNS query patterns of different target domain names.

7 domain names greater than 1.

C. Correlating Non-human Queries across Domain Names
We next measure the correlation among non-human do-

main names. Since non-human DNS queries are normally
generated by computer programs, we can detect the existence
of software-like operating systems by targeting a collection
of non-human domain names queried by the same software
in two steps. The first step is to calculate the correlation
between non-human domain names. The second step is to
detect correlated domain name communities corresponding to
the same software.

1) Defining Correlation Metric: If two non-human domain
names are correlated (i.e., queried by the same software), both
domain names will be queried for a period of time upon
the initialization of the software, even though their query
frequencies are different. To define the correlation between
non-human domain names, we define the following metric
based on the Jaccard coefficient:

Correlation(A,B) =
|T (A) ∩ T (B)|
|T (A) ∪ T (B)|

, (3)

where A and B are two domain names, T (X) returns a set of
occurrence tuples for domain name X , and | · | calculates the
set cardinality. An occurrence tuple is defined as (querent,
time slot) to represent a DNS query occurrence event,
where querent denotes the IP address that initiates the
query, and time slot is one of the equally divided time
periods between data collection start and end times.

Eq. (3) is able to characterize the co-occurrence likelihood
of DNS queries in terms of occurrence tuples for two domain
names. Note that defining the length of time slots is crucial.
If the length is too small, the intersection of occurrence tuples
for two domain names will be empty with a high probability,
resulting in no correlation. Conversely, if the length is too
large, the correlation will be over-amplified.

An optimal length of time slots requires the value of (3) of
two correlated domain names to be one, and the value of two
uncorrelated domain names to be zero. However, for different
pairs of domain names, it is inappropriate to set the length to
be constant, since any pair of domain names have unique DNS
query frequencies. Therefore, for each pair of domain names,
we set the length to be the smaller one of the average time
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Fig. 8. The correlation matrix of 514 possible non-human domain names.
Blacker pixel indicates a stronger correlation.

intervals of two domain names’ DNS queries on a per-querent
basis. For instance, if domain names A and B are queried
every 60 and 80 seconds, respectively, the length will be set
as 80 seconds so that the correlation between A and B can be
captured by (3).

2) Buiding Correlation Matrix: Based on the defined
correlation metric, we calculated the correlation between any
pairs of 514 extracted non-human domain names, and derive a
correlation matrix of size 514× 514, the converted grayscale
image is shown in Fig. 8. In the figure, the pixel value is
calculated as follows:

p(i, j) = 255− 255× Correlation(Di, Dj), (4)

where Di and Dj represents the ith and the jth non-human
domain name, respectively.

In Fig. 8, we observe that the main diagonal pixels of the
matrix are all black, since each domain name is completely
related to itself. We also find that there are two very large
black squares and some small squares. Each square actually
represents a strongly correlated clique. Most of the elements
in the clique are pairwise correlated.

3) Detecting Correlated Communities for Passive Software
Discovery: Having the correlation matrix, we then detect
correlated communities of domain names (i.e., the squares in
Fig. 8). To this end, we build a correlation graph, wherein
the nodes are domain names and the edges are the correlation
between nodes. We employ the Louvain method to effectively
find correlated communities of domain names [7]–[9].

The basic idea of the Louvain Method is to maximize the
modularity of the entire data. The modularity Q is a value

Algorithm 2 Find the communities among non-human domain
names using the Louvain method.
Input: an undirected graph
Output: the communities in the graph
1: while True do
2: Each node is assigned to its own community.
3: while True do
4: for each node i do
5: for each i’s neighbor j do
6: Moving i to the community of j.
7: Calculate the modularity change ∆Q.
8: Moving i back to its original community.
9: if maxj{∆Q} > 0 then

10: j′ = the neighbor that has the largest ∆Q.
11: Moving i to the community of j′.
12: if there is no new changes then
13: break
14: Build a new network.
15: Put all nodes of the same community into a new node.
16: Renew the edges.
17: if there is no new changes then
18: break
19: return the communities and their related nodes

between -0.5 and 1, which can be calculated as follows:

Q =
1

2m

∑
ij

[Aij −
kikj
2m

]δ(Ci, Cj), (5)

where Aij represents the weight of the edge between the ith
and jth node, ki is the sum of the weights of the edges directly
connected to the ith node, m means the total number of edges
in the graph, Ci and Cj represent the communities that refer
to the ith and jth node, respectively. The Kronecker delta
function δ(Ci, Cj) equals 1 only if Ci == Cj , and otherwise
0. The detailed formula is defined as

δ(ci, cj) =

{
1, if Ci == Cj

0, otherwise
. (6)

As shown in Algorithm 2, to maximize the modularity Q
defined by (5), the Louvain algorithm uses greedy ideas to
gradually combine small communities into large communities.
When falling into a local optimum, the algorithm ends and
returns to the calculated communities.

Due to the weight-sensitive nature of the Louvain algorithm,
too many edges with small weight values may bias the final
results, thereby data preprocessing is required. We therefore
delete the edges with correlation below 0.5 before applying the
Louvain method. Finally, a total of 244 such communities are
detected from the graph, among which only 44 communities
have at least two nodes. Fig. 9 shows the detected communities
that have at least two nodes.

IV. RELATED WORK

DNS-based data analytics has been widely studied in the
past decade [10]–[23]. Most studies focus on cyber security,
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Fig. 9. The visualization of communities of non-human domain names using the Louvain Method. Each point represents a domain name, each edge denotes
the presence of correlation, and a community is uniquely identified by the node color.

such as botnet detection and estimation [15], [24], [25], spam
domains [18], malware detection [26], [27], user tracking [12].
There are also studies focusing on observing human activities
through DNS logs, like student behavior analysis [17].

Our research aims to perform querent-centric DNS query
behavior modeling, based on which software discovery and
estimation are studied. Similar research areas include passively
discovering software (applications) [10], IoT devices [11],
websites [13], operating systems [14], etc.

Passively discovering applications, devices, and operating
systems have been widely studied in recent years [28]–[31].
For network administrators, it is always beneficial to identify
devices and other information on the controlled network. Gen-
erally, the originally passive flow identification used the header
information from IP/TCP layer, and later some application
layer information is gradually used [30].

For example, Van et al. introduced a semi-supervised fin-
gerprinting method for mobile app fingerprinting [10]. In
addition to DNS information, many other features are used,
such as TCP headers. Perdisci et al. identified IoT devices
by calculating the frequency of domain name queries [11].
Large-scale controlled experiments show that the method is
effective. Wang et al. proposed a fingerprint method that uses
the DNS resolution sequence as a fingerprint [13]. Then, the
longest common subsequence algorithm is used to compare
the similarity of website fingerprints. Chang et al. fingerprinted
OS types only using the DNS queries [14]. They designed a

method to extract useful features for each OS.
The study most similar to our work is [19]. Ruan et

al. proposed a periodic trend mining method and applied
it to anomaly detection. The smallest unit of time in this
work is hours, and the periodic trend in one day cycle is
studied. Comparing to their work, we focus on digging the
differences between human and non-human domain name
queries. Moreover, our method could not only be extended to
distinguish between human and non-human DNS queries, but
also applicable in passive software discovery and estimation

V. CONCLUSION

We focused on querent-centric DNS modeling and its appli-
cation in passive software discovery, a new topic not yet deeply
investigated. Through our study, two research questions have
been systematically tackled. One is how to determine whether
a DNS query originating from a querent is issued by humans
or software entities. The other is to discover which software
entity a querent is using to issue the observed DNS queries.

We based our study on large-scale DNS traffic, and handled
practical issues in pre-processing and denoising the dataset.
Moreover, several interesting findings were found by our
measurement study. For example, the time characteristics of
human queries substantially differ from non-human queries.
Inspired by the measurement findings, an entropy-based algo-
rithm was proposed to distinguish between human and non-
human domain names. We also proposed a community-based
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software discovery solution without labor-intensive labeling
through detecting communities of non-human domain names.
Our solution can automatically discover the presence of a
software entity.
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