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Abstract—In recent years, in the field of software defect
prediction, researchers have proposed the Just-in-Time defect
prediction technology, which can predict whether there are
defects in each code change submitted by developers. This method
is instant and easy to trace. However, the accuracy of Just-in-
Time defect prediction is affected by the imbalance of data set
categories. 20% of the defects in the software engineering field
may exist in 80% of the modules. In most cases, code changes that
do not cause defects account for a larger proportion. Therefore,
there is an imbalance rate in the data set, that is, the imbalance
between the minority and majority categories, which will affect
the classification prediction effect of the model. Most types, that
is, code changes that will not produce defects will make the model
have an artificially high prediction accuracy, and it is difficult to
obtain the expected results in practical applications. Moreover,
the data set features contain many irrelevant features and
redundant features, which will also increase the complexity of the
prediction model. In order to improve the prediction efficiency of
just in time defect prediction. Improve the interpretability and
transparency of the model and establish the trust relationship
between users and decision-making model. For this reason, we
have established a RandomForest defect prediction model, using
multiple different types of change features to study 6 open
source projects from different fields. The model is explained
to a certain extent using LIME interpretability technology .
Using interpretability methods to extract features and trying
to reduce the developer’s workload as much as possible. Our
research results show that through the interpretability of the
defect prediction model and identifying key features, 45% of the
original workload can be used, and 96% of the original work
effect can be achieved.

Index Terms—software metrics, Just-in-Time defect predic-
tion,interpretability, interpretation method

I. INTRODUCTION

Software defect prediction has always been the most im-
portant research field in software engineering research. Due to
the complex nature of the software system, software defects
cannot be avoided. Software defects refer to defects and
problems that exist in software products that cause the product
to fail to meet the software requirements and its specifications,
and need to be repaired [1], the existence of software defects,
extremely.

This greatly restricts the application and development of
software and brings great economic losses. According to the
estimation of the National Institute of Standards and Tech-
nology (NIST), it is a year caused by software defects in the

United States. The economic loss is as high as 60 billion U.S.
Dollars. Through further research, NIST discovered, identified
and repaired these software defects, which can help the United
States save 22 billion U.S. Dollars [2]. Therefore, repairing
defects has become a key activity in software maintenance,
but it also consumes a lot of time and resources [3]. The data
shows that the cost of repairing defects accounts for 50% to
75% of the total cost of software development [4]. Finding
defects in time can help reduce the cost of repairing defects
and improve software quality.

Initially, in order to cope with this thorny problem, re-
searchers in the field of software engineering proposed soft-
ware defect prediction technology. However, in traditional
defect prediction, the main purpose is to predict coarse-grained
software entities, such as files, modules, and packages. The
software defect prediction model may predict that a huge file
has defects, but for developers, checking the entire file will
consume a lot of time and effort, and the file may have been
modified by multiple people. Find a suitable developer It is
not simple. Although these prediction models have certain
advantages, in some cases they can find defects in time, but in
the actual application of software development environment,
the shortcomings of coarse-grained prediction methods are un-
doubtedly exposed. In the face of huge software development
packages, it is obvious that coarse-grained prediction methods
are exposed. The software defect prediction technology of
the company has been unable to meet the timely discovery
of software defects, and there is an obvious problem of
inefficiency [5].

In order to cope with the above-mentioned challenges, we
propose the just-in-time defect prediction technology, which
refers to the technology that predicts whether there are defects
in each code change submitted by the developer. In Just-
in-Time defect prediction, the predicted software entity is a
code change. The Just-in-Time defect prediction technology
is instantaneous, which is embodied in the fact that this
prediction technology can change the code after the developer
submits a code change Carry out defect analysis to predict
the possibility of defects. This technology can effectively
deal with the challenges faced by traditional defect prediction
technologies, which are mainly reflected in the following three
aspects:
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(1) Fine-grained. Compared with module or file-level de-
fect prediction, change-level prediction focuses on more fine-
grained software entities. Developers can spend less time and
effort to review code changes predicted to be defective.

(2) Just-in-Time. Just-in-Time defect prediction technology
can predict when the code change is submitted. At this time,
the developer still has a vivid memory of the changed code,
and does not need to spend time to re-understand the code
change submitted by himself, which is helpful for more Fix
defects in time.

(3) Easy to trace. The developer’s information is saved
in the code changes submitted by the developer. Therefore,
the project manager can more easily find the developer who
introduced the defect, which helps to analyze the cause of the
defect in time and help complete the defect assignment [6].

In previous related studies, a batch of instant defect pre-
diction research results have been produced, but there are
also some limitations. Among them, Mockus and Weiss first
proposed defect prediction at the code change level [7], In
their prediction technology,the predicted software entity is a
code change combination composed of multiple code change
submissions, but they only analyzed a large-scale telecommu-
nication’s system. Kim et al. first proposed defect prediction
for each code change in TSE in 2008 [8]. Kamei et al.
called this defect prediction technology for the first time in
TSE in 2013 [9]. Early research did not consider the work
required for comprehensive quality assurance, such as testing
and code review. Early research only considered indicators in a
specific environment. In recent years, instant defect prediction
technology has become a research hotspot in the field of
defect prediction due to its fine-grained, instantaneous and
traceable advantages. In a large amount of work, researchers
have focused on data annotation, feature extraction, model
construction, model evaluation, etc. A large number of valu-
able theories and technologies have been put forward. In
addition, instant defect prediction has also attracted attention
from the industry. For example, Shihab et al. conducted an
empirical study on 60 teams of a large software company
[10], and Kamei et al. conducted an empirical study on
five company projects [9], demonstrating the practicality of
instant defect prediction technology. It can be seen that: instant
defect prediction technology has attracted the attention of
software engineering academia and industry, and has produced
a number of excellent research results, but also faces the lack
of unified modeling Challenges of technology and evaluation
indicators. Whatever, there is currently no research work to
sort out and summarize the current research progress in this
field. In view of this, this article intends to focus on the current
research progress of instant defect technology, from data
annotation, feature extraction, model construction and model
evaluation and other aspects are sorted out, conducted and
summarized, and the main problems and future development
directions in the field are summarized. In this paper, we use
the data set of six open source projects published by Kamei
[9], including There are 220,000 changes, and different types
of change features are used to better conduct our experimental

research.
Although machine learning outperforms humans in many

meaningful tasks, its performance and application are also
questioned due to the lack of interpretability. For ordinary
users, the machine learning model is like a black box. We give
it an input and feed back a decision result. No one can know
the decision basis behind it and whether its decision is reliable.
The lack of interpretability may pose a serious threat to many
practical applications based on machine learning in practical
tasks, especially in security sensitive tasks. For example, the
lack of interpretable automatic medical diagnosis model may
bring wrong treatment plans to patients, and even seriously
threaten the life safety of patients. Therefore, the lack of
interpretability has become one of the main obstacles to the
further development and application of machine learning in
real tasks.

How should ”explain a model” itself be understood? For
humans, it refers to providing visual text or images so that
people can intuitively understand the prediction results based
on the model. More generally speaking, it is the process of
the model ”self-proving innocence”.

For example, the example shown in the Fig.1 describes the
process of a model used for ”assisted seeing a doctor” to
prove its credibility to doctors: the model not only has to give
its prediction result (flu), but also provides the result of this
The basis of the conclusion-sneeze, headache and no fatigue
(counter-example). Only by doing so can doctors have reason
to believe that its diagnosis is justified and well-founded to
avoid the tragedy of ”frustrated life”.

Fig. 1. Explaining individual predictions. A model predicts that a patient
has the flu, and LIME highlights which symptoms in the patient’s history
led to the prediction. Sneeze and headache are sneeze portrayed as
contributing to the “flu” prediction, while “no fatigue” is evidence against
it. With these, a doctor can make an informed decisiohneaadabcoheut
the model’s prediction. [33]

We illustrate our research in the form of three research
questions:
• RQ1: How efficient is our prediction model?

Mockus and Weiss only used a large-scale telecommuni-
cation’s system project to evaluate their predictive model
[9]. In order to better evaluate the efficiency of our model,
we use the data set of six open source projects published
by Kamei [9]. In order to better identify the defects
caused by code changes, according to a series of new
ones proposed by Kamei The characteristics of the code
changes are used to build a new defect prediction model.
We can predict the defects caused by the entire code
change with 68% accuracy and 64% recall.

• RQ2: What features can be used to determine which
features play a significant role in prediction through
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interpretability techniques?
The existing Just-in-Time defect prediction technology
only predicts the possibility of defects in the change,
and there is currently no relevant research on what
the predicted defect is, such as the type and location
of the defect. The defect type describes the cause and
characteristics of the defect, the defect location refers to
the module, file, function and even code line where the
defect is located. Knowing the defect type and location
can help developers to quickly repair the defect. Although
researchers have proposed many defect classification and
defect location techniques for immediate defects There is
no relevant research on the predicted defect classification
and defect location. We use the interpretable model to find
out the NF (number of files), the relative loss measure
(LA/LF and LT/NF), and the time interval between the
last change and the current change. (PD) is the most
important risk factor.

• RQ3: After removing unimportant features, what is the
performance of the defect model?
At this stage, Just-in-Time software defect prediction
still has the problem of heavy workload and low work
efficiency. We hope that through preliminary screening,
the most influential features can be screened out through
interpretable models. Our research results show that we
can only spend 45% of the original work and achieve
96% of the original work capacity.

II. BACKGROUND AND RELATED WORK
A. Just-in-Time defect prediction technology

Fig.2 shows the general process of instant defect prediction
technology, which mainly includes three stages: data annota-
tion, feature extraction, and model construction. Among them,
the data annotation stage mainly relies on version control
systems (such as git) and defect tracking systems (such as
bugzlla or jira), the code changes are marked as defect changes
(buggy) or non-defect changes (clean); the feature extraction
stage mainly expresses code changes by extracting features
of different dimensions; the model construction stage mainly
relies on machine learning technology to build a predictive
model. When new code changes are submitted, the model will
predict the possibility of defects.

In recent years, Just-in-Time defect prediction technology
has become a research hotspot in the field of defect prediction
due to its advantages of fine-grained and instant traceability.
Khuat TT et al [35]. empirically evaluated the importance
of sampling for various classifier sets on unbalanced data in
the software defect prediction problem. Combining sampling
technology and integrated learning models, it is positive for
data prediction with imbalance problems. The role of. Liu et
al. used the information gain feature selection algorithm to
optimize the features of the original data set, and combined
with the polynomial Bayes algorithm to train and test the
optimized data set. L Pascarella et al [36]. proposed a novel
fine-grained model to predict the defective documents con-
tained in the submission, and reduce the workload required

to judge defects according to the classification performance
and the degree to which the model. In the class weight
learning stage, Hu et al. obtain the optimal weights of different
classes through adaptive learning of class weights; then, in
the training stage, use the optimal weights obtained in the
previous step to train 3 base classifiers, and pass the soft The
integrated method combines three base classifiers; finally, in
the decision-making stage, a decision is made according to the
threshold shift model. KK Bejjanki et al [37]. proposed class
imbalance reduction (CIR). By considering the distribution
characteristics of the data set, they proposed an algorithm
to establish symmetry between defective records and non-
defective records in an unbalanced data set. The combination
of feature selection and ensemble learning is also a research
hotspot in classification prediction. Wang et al. combined
Relief feature selection algorithm and heterogeneous ensemble
learning algorithm to identify three different cryptosystems.

Fig. 2. General framework of just-in-time defect prediction.

B. LIME

LIME (Local Interpretable Model-agnostic Explanations)
abbreviation. It can be seen from the name that the model is a
partially interpretable model and an interpretable method that
has nothing to do with the model itself. Use the trained local
proxy model to interpret a single sample. Suppose that for the
black box model that needs to be explained, take the sample
of the concerned instance, generate new sample points by
perturbing nearby, and obtain the predicted value of the black
box model, and use the new data set to train an interpretable
model (such as Linear Regression, Decision Tree) to get a
good local approximation to the black box model. Each part
of the name reflects our intention to explain. Its name also
reflects its characteristics very well:

Local: Build a local linear model or other proxy model
based on the predicted value you want to explain and the
nearby samples;

Interpretable: The explanation made by LIME is easily
understood by humans. Use a locally interpretable model to
interpret the prediction results of the black box model,and
construct the relationship between the local sample features
and the prediction results;

Model-Agnostic: The algorithm explained by LIME has
nothing to do with the model. Whether it is using various
complex models such as Random Forest, SVM or XGBoost,
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the prediction results obtained can be explained by the LIME
method;

Explanations: LIME is an afterthought method;
The author puts forward four conditions that the interpreter

needs to meet:
Interpretability: There are requirements for both models

and features. Decision trees, linear regression and naive Bayes
are all interpretable models, provided that the features are also
easy to interpret. Otherwise, it is like Word Embedding, even
a simple linear regression cannot be interpretable. And inter-
pretability also depends on the target group, such as explaining
these models to business people who don’t understand the
models. In contrast, linear models are easier to understand
than simple Bayes.

Local fidelity: Now that we have used interpretable models
and features, it is impossible to expect simple interpretable
models to be equivalent to complex models (such as the
original CNN classifier) in effect. Therefore, the interpreter
does not need to achieve the effect of a complex model
globally, but at least the effect must be close locally, and the
local part here represents the surroundings of the sample we
want to observe.

Model-independent: Any other model, such as SVM or
neural network, the interpreter can work.

Global perspective: Accuracy, AUC, etc. are sometimes
not a good indicator, we need to explain the model. The job
of the interpreter is to provide an explanation of the sample
to help people trust the model. General Idea: LIME aims to
approximate the black-box model f with a simple function g
around the point of interest x. g is required to lie into the class
of explainable models G.

f : RP → R, black − boxmodel
g : Rp → R, explainablemodel

where P is the number of features employed by the black-
box model, to make predictions about the response variable.
The explainable model g uses only p of the original P vari-
ables, in order to reduce the complexity. Solving the following
optimisation problem, we obtain the function g most similar
to f in the neighbourhood of x.

argmin
g∈G

L(f, g, πx) + Ω(g)

Ω(g) : complexity of g
L : loss function

πx : weight assigned according to x proximity

Chosen a given individual x, LIME returns a local ex-
plainable model g, which in turn provides the most important
variables to predict the points in the x neighbour- hood.(Fig.3)

C. SP-LIME

Partially, we only explained the behavior of the model on
one example, but this cannot see the behavior of the model
as a whole. Therefore, we need more samples to help us
observe the behavior of the model. However, choosing a
suitable sample is a high threshold for users. Therefore, the SP

Fig. 3. LIME’s modus operandi. [33]

(submodular-pick) LIME algorithm is proposed in the article
to automatically search for suitable samples.

In the Fig.4, each row represents the interpretation of a
sample, and each column represents a feature, that is, a weight
in the interpretation. The algorithm selection examples are
mainly considered from two aspects. The first is the diversity
of features, that is, the selected examples should have rich
features, and the second is the importance of features, that
is, the selected features should be included in the decision-
making process of the model. Quite a right to speak. As an
example in the above figure, if the algorithm can fully consider
the diversity, only one of the second and third examples
will be selected because their explanations are very similar
and cannot provide more information to explain the behavior
of the model. In the field of immediate software defects,

Fig. 4. Toy example W. Rows represent in- Covered Features stances
(documents) and columns represent features (words). Feature f2 (dotted
blue) has the highest importance. Rows 2 and 5 (in red) would be selected
by the pick procedure, covering all but feature f1 [33].

there is less research on model interpretability. In this article,
through LIME analysis, this article carries out heuristic feature
combination and data processing, and the ultimate goal is to
improve the accuracy of the Just-in-Time defect prediction
model. Finally, LIME is used to analyze the relationship
between the features in the model and the final prediction
result,to explain the complex Just-in-Time defect prediction
model.

III. CASE STUDY DESIGN

In this part, we mainly answer the preliminary preparations
for the three questions we are studying. Here, we introduce
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in detail the relevant information of the data set used in the
experiment and the related processing of the data set.

A. Research Data

In previous experiments on defect prediction, the experi-
ments of Mockus and Weiss and Kim et al. [7] [8]only exam-
ined the risk of code changes in a commercial or open source
project. In our experiment, we used 6 different projects, which
are very famous open source projects (Bugzilla, Columba,
Mozilla, Eclipse JDT, Eclipse Platform, and PostgreSQL). The
projects used are all written in JAVA. Previous studies on
change risk only examined the risk of open source project
changes [26], or only the risk of commercial project changes.
To increase the generality of our results and produce more
specific results, we used 11 different items. Six are large, well-
known open source projects (ie Bugzilla, Columba, Mozilla,
EclipseJDT, EclipsePlatform, and PostgreSQL). The project
used is written in java. To conduct our case study, we extracted
information from the project’s CVS repository and combined
it with the bug report. We use the data provided by the
MSR2007 Mining Challenge to collect data from the Bugzilla
and Mozilla projects. Data for Eclipse JDT and platform
projects are collected from the MSR 2008 Mining Challenge.
For Columba and PostgreSQL, we mirrored the official CVS
repository.

In Table I, the statistical data related to all projects is
summarized. The total number of code changes for all projects
in this table, in parentheses next to it, shows the percentage of
changes that will lead to defects in the total changes. Although
a code change may cause one or more software defects, in our
experiments, the exact number of software defects caused is
not very important for our prediction model and experimental
results. The table shows the average of the LOC at the file
level and the change level, as well as the number of files
modified each day, and the number of changes made each
day. This table also shows the maximum and average number
of developers who made changes to a single file. For example,
X file is modified by four developers of A, B, C, D, Y file
is modified by B, C developers, then the maximum number
of development files modified for a single file is 4 and the
average is 3.

B. Identify defects and introduce changes

In order to identify the defects caused by code changes, we
use the SZZ algorithm. For a better understanding, we use
a defect in the Apache project ActiveMQ (AMQ-1381) as a
specific example to describe the four steps of the algorithm
framework in detail.

(1) Identify defect repair changes. Scan all historical data
stored in the version control system, that is, all code changes,
and identify code changes containing defect IDs in the log.
These code changes are identified as defect repair changes.
As shown in Fig.4, The code change ID for identifying and
repairing AMQ-1381 is 645599.

(2) Identify the defective code to be repaired. Use the
diff algorithm implemented by the version control system to

identify the lines of code that are changed and modified by the
code to repair the defects. These modified lines of code are
identified as defective code. As shown in the Fig.5, the code
is Change #645599 The modified code contains a function
declaration, where the Command parameter type is wrong,
and its correct type is Object instead of Command.

(3) Identify possible defect introduction changes. Use the
annotate command in the code version control system to
trace back the code change submission history. The first
change to the defect code is identified as a possible defect
introduction change. As shown in Fig.5, the code change
#447068 introduces the incorrect function declaration found
in step 2.

(4) Noise data removal. Remove possible noise data from
possible defect introduction changes. Noisy data refers to
changes that have been mistakenly marked as introducing
defects but do not actually introduce defects (false positive).
Sliwerski et al. proposed that the introduction of defects
Changes should be submitted before the defect is reported
[11]. Therefore, code changes that are submitted later than
the defect report time will be treated as noise in the im-
plementation of SZZ. The code change #447608 shown in
the figure is submitted at the time of the defect. Before the
report was created, therefore, this code change was finally
confirmed to be a code change that introduced defect AMQ-
1381. In the Columba and PostgreSQL examples, we use an

Fig. 5. General framework of the SZZ algorithm.

approximate algorithm (ASZZ) to identify whether a change
is prone to defects, because there is no defect identifier quoted
in the change log. In this case, we cannot verify whether the
change that we determined to be a defect repair is really a
defect repair. The algorithm only needs to find the keywords
associated with the defect repair change (for example, ”Fixed”
or ”Bug”), and assume that the change fixes the defect.

C. Data Processing
Target dimension: This dimension is used to characterize

the goal of submitting code changes. The goals of developers
submitting changes include repairing defects, implementing
new features, refactoring, adding documents, etc. [16]. Re-
search shows that changes to modify defects are more im-
portant than other types of changes Complex, more likely to
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TABLE I
STATISTICS OF THE STUDIED PROJECTS

Period The total number of changes
Average LOC # of modified files # of changes # dev.per file

File Change per change per day Max Avg

Bugzila 08/1998 - 12/2006 4,620 (36%) 389.8 37.5 2.3 1.5 37.0 8.4

Columba 11/2002 - 07/2006 4,455(31%) 125.0 149.4 6.2 3.3 10.0 1.6

Eclipse JDT 05/2001 - 12/2007 35,386(14%) 260.1 71.4 4.3 14.7 19.0 4.0

Eclipse Platform 05/2001 - 12/2007 64,250(14%) 231.6 72.2 4.3 26.7 28.0 2.8

Mozilla 01/2000 - 12/2006 98,275(5%) 360.2 106.5 5.3 38.9 155.0 6.4

PostgreSQL 07/1996 - 05/2010 20,431(25%) 563.0 101.3 4.5 4.0 20.0 4.0

OSS-Median - 27,909(20%) 310.1 86.7 4.4 9.4 24.0 4.0

introduce defects [11]. Therefore, in a large number of Just-
in-Time defect prediction work, researchers use whether the
change repairs the defect as a feature [9], [10], [18]–[20]. In
addition, Shihab et al. also proposed to use Change the number
of related defect reports to quantify the code change target
[10].

Code distribution dimension: This dimension is used to
characterize the distribution of change and modification code
in related files. Research shows that for changes in which
the modification code is distributed in multiple files, the
developer needs to understand more code. Therefore, this more
decentralized code Changes may introduce defects [31]. Kamei
et al. proposed to use features such as the number of files,
the number of folders, and the number of subsystems to be
modified to quantify the distribution of changed codes [19].
Hassan proposed the use of entropy prediction of the distribu-
tion of changed codes Defects, and verified the effectiveness
of this feature [34]. Therefore, Kamei et al. proposed to use
this feature to predict defective changes [19].

Scale dimension: This dimension is used to characterize the
scale of change and modification code. Moser et al. observed:
The larger the scale of the change and modification code,
the more likely it is to introduce defects [21]. In existing
work, researchers have used changes to increase, Reduce the
number of lines of code to quantify the size of the change. In
addition, researchers use other granularities to quantify the size
of the changed code. Shihab et al. proposed using changes to
increase and decrease the number of code segments (chunks)
to quantify the size of the change [10]. Kamei et al proposed
to change the code line of the relevant document before the
change is submitted to quantify the scale of the change [6].
At the same time, Kamei et al. found that the increase in the
number of lines and the reduction in the number of lines of
code are highly correlated. In order to avoid this correlation
from affecting the prediction model , Kamei et al. proposed to
use the relative increase in the number of lines and the relative
decrease in the number of lines to quantify the scale of the
change. The relative increase in the number of lines and the
relative decrease in the number of lines respectively refer to
the ratio of the actual increase and decrease in the number of
lines to the number of code lines in the relevant file before

the change is submitted [22].
Document modification history dimension: This dimen-

sion is used to quantify the modification history of related
documents. Empirical research shows that the more complex
the document modification history (e.g., it has been modified
multiple times, modified by multiple developers, etc.), the
more likely it is to have defects [21], [23], [24]. In view of
this, the Just-in-Time defect prediction researchers proposed to
use the number of revisions of related files before the change
is submitted, and the number of developers who modify these
files as a feature to quantify the revision history of the files to
predict defective changes [6], [10], [17], [18], [20]. In addition,
Shihab et al. proposed to use the number of defect repair
changes in the historical changes of the modified change-
related documents to quantify the modification history of
the change-related documents [10]. Kamei et al. proposed
to modify the related changes before submitting the changes
The time difference between the recent change of the file and
the change is used as the modification history of the feature
quantified change file [6].

Developer experience dimension: This dimension is used
to quantify the developer experience of code changes. Re-
search has shown that developer experience will affect soft-
ware quality [5]. In Just-in-Time defect prediction work,
researchers use the number of changes submitted by devel-
opers, Quantify developer experience. In addition, Kamei et
al. proposed to use the number of recent changes submitted
by the developer and the number of changes that affect the
relevant subsystems of the changes submitted by the developer
before the change is submitted to quantify the developer
experience [6]. McIntosh et al. It is proposed that before the
use of change submission, the changes that affect the relevant
subsystems of the changes submitted by the developer account
for the proportion of all changes that affect these subsystems
in the version control system, to quantify the developer’s
development experience of these subsystems [20].

According to previous work by Kamei [6], it is found that
NF is highly correlated with ND, REXP and EXP. Therefore,
we exclude ND and REXP from the model, and use NF and
EXP to further find that LA and LD are highly correlated.
Nagapan and Ball [32] reported that relative churn features
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TABLE II
FEATURE SUMMARY TABLE

Feature dimension Feature name Definition Rationale Related Work

Diffusion

NS Change the number of modified
subsystems

The more changes that modify the subsystem,
the more likely it is that defects will be intro-
duced

Mockus, et al. [7]

ND Change the number of modified
code directories

The more changes you modify the code direc-
tory, the more likely it is to introduce defects Kamei, et al. [6]

NF Change the number of files modi-
fied

The more the number of modified files, the
more likely the change is to introduce defects Mockus, et al. [7]

Entropy
Modify the distribution of the code
in the change-related files (use In-
formation entropy calculation)

The greater the information entropy, the more
scattered the changed code is in related files,
and the more code developers need to under-
stand, the more likely it is to introduce defects

Hasssan [10]

Size

LA/LD Added lines and deleted lines
The more lines of code increase and decrease,
the more likely it is that defects will be intro-
duced

Mockus, et al. [7]

CA/CD Added chunks and deleted chunks
The more code segments are added or reduced,
the greater the impact on the software code, the
more likely it is to introduce defects.

Shihab, et al. [10]

LT Lines of code of files touched by
the change

The larger the file, the more likely it is that the
modification of the file will introduce defects. Mockus, et al. [7]

Purpose
FIX Whether or not the change is a

defect fix
Changes to repair defects are more complex
and easier to introduce defects. Mockus, et al. [7]

NBR Number of defect reports related
to the change

The more related defect reports, the more code
changes need to be modified, and the more
likely it is to introduce defects.

Shihab, et al. [10]

Experience

EXP The number of changes submitted
by the developer

It is not easy for developers with more experi-
ence to introduce defects. Mockus, et al. [7]

REXP The number of recent changes sub-
mitted by developers

Developers who frequently modify code re-
cently are more familiar with project develop-
ment and are not easy to introduce defects.

Mockus, et al. [7]

SEXP
The number of subsystems that the
developer has submitted changes
that affect the change

Developers modify familiar subsystems and it
is not easy to introduce defects. Mockus, et al. [7]

Awareness

Among the changes submitted by
the developer, the changes that af-
fect related subsystems account for
the proportion of all changes that
affect these sub-systems

The more modifications to the subsystem, the
more familiar the developer is with the sub-
system, and the less likely it is to introduce
defects.

McIntosh, et al. [20]

History

NDEV
The number of developers who
have modified the files related to
this change

The more developers who have modified the
file, the more likely the changes to modify the
file will introduce defects.

Shihab, et al. [10]

NUC
The number of changes made
to the relevant documents of the
change

The more times a file is modified, the more
code developers need to understand when mod-
ifying the file, and the more likely it is to
introduce defects when modifying the file.

Shihab, et al. [10]

AGE

The average time difference be-
tween the most recent change and
the change related to the document
that has been modified

Recently submitted changes are more likely to
introduce defects. Kamei, et al. [6]
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are better than absolute features in predicting defect density.
Therefore, using LT to normalize LA and LD is similar to the
method of nagapan and Ball. We also use NF to standardize
LT and NUC, because these features have a high correlation
with NF.

Because most features are biased in distribution, we use
logarithmic transformation to reduce this bias. We have per-
formed standard log transformation for each feature. Because
the value of FIX is a Boolean variable, it is excluded.

Through the data set, we can find that our data is relatively
unbalanced, because the number of changes that cause defects
is still a small number relative to all changes. If handled
incorrectly, the performance of the prediction model may
decrease, leading to inaccurate prediction results [26]. In order
to solve the problem of data imbalance, we undersampling the
training data, that is, randomly delete most non-defect-causing
change instances, making it equal to the number of defect-
causing change instances. Here we are only under-sampling
the training data, and will not perform special processing on
the test data.

IV. CASE STUDY RESULTS

A. RQ1: How efficient is our prediction model?

Overview: In order to answer RQ1, we use the characteris-
tics in the table to establish a software change risk prediction
model, and then use the open source project data set to evaluate
the performance of the model.

Validation technique and data used: We used the 10-fold
cross-validation method on the data set [27]. First, the data set
was randomly shuffled, and then the data set was divided into
10 equal parts, namely 10 folds. After that, each fold was used
as a test set, and the other 10 folds passed The under-sampling
method is then used as a training set to train the prediction
model and verify the calculation performance indicators. A
total of 10 experiments are run, and finally the performance
indicators obtained each time are averaged as the evaluation
result of 10-fold cross-validation.

Approach: Similar to the previous work [6], we use the
random forest classification model to make predictions. In
order to avoid overfitting our model, we choose a set of
smallest sets as the independent variables of the model. We
first manually deleted the highly correlated features, and then
used the Mallows-based CP criterion to gradually delete the
remaining collinear variables and variables that have no effect
on the model.

In order to evaluate the prediction performance of the
software defects of the model, we use different indicators to
quantify the prediction results of the model. These indicators
include precision rate, recall rate, F1-measure, correct rate and
AUC. These performance indicators can all be calculated. The
predictive model has four possibilities for predicting the results
of a code change: 1. predicting a defective code change as
a true positive (TP); 2. predicting a defective code change
as having no defect ( false positive, referred to as FP); 3.
Predict a code change without defects as no defect (true
negative, referred to as TN); 4. Predict a code change without

defects as a defect (false negative, referred to as FN) according
to The prediction model can calculate the accuracy, recall,
correctness, and F1-measure of the four prediction results in
the test set. Since Just-in-Time defect prediction research pays
more attention to the prediction effect of defective changes, the
description in this article The precision, recall, and F1-measure
are all for defective code changes.

In Just-in-Time defect prediction research, AUC is also a
commonly used performance indicator [6]. AUC stands for
Area Under the Curve of receiver operating characteristic,
which refers to the area under the receiver operating char-
acteristic curve (ROC). The ROC curve is The TP ratio (true
positive rate, TPR) is a function curve with the FP ratio (false
positive rate, FPR) as a variable on all thresholds (threshold).
The prediction model needs to use a threshold to perform the
labeling of code changes. Judgment threshold ranges from
0 to 1. When the predictive model predicts a code change,
the model will calculate the probability value of the code
change including the defect. In order to get the prediction
result (the code change is defective or not defective), the The
model compares the probability value with the threshold: if
the probability value is greater than the threshold, the model
predicts the code change as defective; otherwise, it predicts
the code change as no defect. In this way, the TP, FP, TN, and
FN can be calculated Therefore, the calculation of precision,
recall, F1-measure and correct rate all depend on the threshold
of the prediction model [10], [11].

Since ROC is a function curve of TPR with FPR as a
variable on all thresholds, ROC does not depend on the
threshold. And AUC is the area under the ROC curve, so
the AUC value does not depend on the threshold [10,11].
Lessmann et al. pointed out , AUC is robust to unbalanced data
[9]. The calculation of AUC automatically takes into account
the imbalances in the data. AUC has a statistical explanation
[10]. In the context of instant defect prediction, AUC can
be evaluated the predictive model has a higher probability of
calculating the defective probability of a randomly selected de-
fective change than a randomly selected code change without
defects. In practical applications, the output of the predictive
model is used to schedule the work. AUC is suitable for
evaluating this kind of scheduling.

Results: We made our predictions, and the results are given
in the Table III. We compare our prediction results with
the benchmark method (random prediction defect). The last
two columns in the Table III use our prediction model in
precision Compared with the AUC indicator, the improvement
(percentage) of the random prediction model. For six open
source projects, our prediction model achieved an average
precision rate of 36.8% and a recall rate of 68.8%, which
shows that our performance is 90% higher than the random
prediction model. We noticed from the table that our predictive
model achieves a higher recall rate, which is a more important
performance indicator in highly skewed data sets. For example,
the average recall rate in the previous study by Kim [26] et
al. was Menzies et al. [29] explained in the article that, in
many cases, when the data has great imbalance, the prediction
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TABLE III
RQ1 EXPERIMENT RESULT TABLE

Acc Prec Recall F1 AUC Improved Prec Improved AUC

BUZ 71.4% 59.5% 67.3% 63.0% 77.5% 64.0% 55.0%

COL 70.5% 50.8% 68.0% 58.0% 72.7% 63.7% 46.3%

JDT 69.7% 26.6% 65.2% 37.4% 73.2% 91.9% 45.4%

MOZ 75.4% 14.1% 74.6% 23.6% 81.7% 191.1% 64.4%

PLA 68.7% 26.6% 67.6% 37.7% 74.3% 86.5% 48.9%

POS 73.4% 47.0% 70.6% 56.3% 76.5% 89.0% 52.9%

Avg 71.5% 37.4% 68.9% 46.0% 76.0% 97.7% 52.2%

Med 71.0% 36.8% 67.8% 47.0% 75.4% 87.8% 50.9%

model with low precision and high recall is still very useful.
This is because, as long as most ”bad situations” are avoided,
developers can accept the idea of checking a little more than
needed files or changed files. The precision of traditional
defect prediction models with file-level granularity is usually
low (for example, the precision is 14% [29], [30]. As shown in
the data set detail table, in open source projects, we change on
average every day The total number of changes and the number
of changes that caused defects are 9.4 and 1.9, respectively.
Based on our prediction results, our prediction model marks an
average of 3.5 changes per day as defect induction, of which
2.2 are false positive results. This result means that developers
every day Only need to repeatedly check 2.2 unnecessary
changes, so we believe that our predictive model is useful
in practical applications.

B. RQ2: What features can be used to judge by interpretability
techniques to play a significant role in the prediction?

Overview: The existing technical knowledge of Just-in-
Time defect prediction predicts the possibility of defects in
the change, and does not explain the predictive defect model,
which helps developers to find out the type and location of
defects more quickly. We hope to be able to use interpretable
techniques to find the key features that cause defects.

Approach: Because the random forest is also a black box
model to a certain extent, we use the LIME method to interpret
the prediction results. We first float the training set and the
test set, and then randomly select a single instance to interpret
it. In order to be able to find the main characteristics that
affect the defect prediction results, we use the SP-LIME
method in LIME. We select 300 instances in each data set.
The selected instances can cover various label types and
cover as many cases as possible. , And not redundant (not
duplicated). Because the SP-LIME method is still based on
the partial LIME method, we use the two indicators mentioned
by Visani et al [38]. to evaluate the stability of LIME: VSI
index (variable stability index) and CSI (coefficient stability
index), high The VSI value guarantees that the characteristics
presented in different LIMEs are almost the same. On the
contrary, a lower VSI value indicates that the LIME model

Fig. 6. Columba Analysis Chart.

Fig. 7. Mozilla Analysis Chart.

is unreliable. For the CSI index, the higher the CSI index
value, it means that the influence coefficient of each feature
in the LIME model is very reliable, and the lower value will
make developers evaluate this feature very cautiously. We will
evaluate the importance of the influence of their characteristics
and the stability of the model on six open source databases.

Results: Select the analysis graphs of the two data sets
Columba and Mozilla for display. Because these two data
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TABLE IV
FEATURE EXTRACTION SUMMARY TABLE

ns nf entropy lt ndev pd npt exp sexp churn churnp CSI VSI

BUZ - - + + + 94% 90%

COL + - - + + 92% 84%

JDT - - - + + 95% 88%

MOZ + + - + + 96% 86%

PLA + - + + + 97% 89%

POS - + - + + 95% 86%

sets are relatively representative(Fig.6 Fig.7), Columba has the
least amount of total data and has a lower class imbalance
rate; Mozilla has the most data and has the highest class
imbalance rate. The summary plots of the two original data
sets are shown in the figure. According to the two pictures,
the following rules of software defect data distribution are
summarized: (1) The more subsystems, function libraries, and
files defined in a program, the more defects are likely to occur;
(2) The operation of adding, deleting or modifying the code
The more, the more likely it is to cause defects; (3) The more
lines of code in the file, the more likely it is to cause defects;
(4) The location where the defect is repaired is more likely to
have other defects; (5) The more developers have contacted
(6) Code changes, the shorter the interval, the more likely it
is to have defects; (7) The more the code is changed last time,
the greater the probability of defects; (8) Related procedures
The more experience the staff has, the smaller the probability
of bugs caused by changes. At the same time, the top five
features that have the most important impact on the two data
sets of Columba and Mozilla are NF, IT, EXP, Churn, Churnp
and NF, IT, PD, Churn, Churnp according to the results shown
above.

As shown in the table below, we summarize the experimen-
tal results into a table IV. We use + - to indicate whether
the feature predicts a software defect as a defect is positive
or negative. We can see that NF (number of files), relative
loss metrics (LA/LF and LT/NF), and whether changes can
repair defects (PD) are the most important risk factors. At the
same time, the average values of our CSI index and VSI index
reached 95% and 87%, respectively, indicating that our LIME
has considerable stability.

C. RQ3: After removing unimportant features, what is the
performance of the defect model?

Overview: Through the research on RQ2, we have extracted
the top five most important features corresponding to the six
open source projects. In RQ3, we want to know what the
features we extracted through interpretability technology have
for the performance of the defect prediction model influences.

Approach: Based on the results of RQ2, we have calculated
the top five characteristics of each data set corresponding to
the influence degree. We use the random forest model in RQ1
to make predictions. Similar to RQ1, we still use the 10-fold

cross-validation method. The five-bit features are trained and
predicted, and compared with the results in RQ1.

TABLE V
COMPARISON TABLE OF PREDICTION EFFICIENCY FOR EXCLUDING

LOW-IMPACT VALUE FEATURES

Using 11 features Retain the five most influential features

BUZ 71.4% 68.3%

COL 70.5% 68.9%

JDT 69.7% 64.3%

MOZ 75.4% 72.1%

PLA 68.7% 65.2%

POS 73.4% 71.7%

Results: The experimental results are shown in Table V
,When the five most important features are used to train the
prediction model, the average accuracy of the model can reach
68.42%. Compared with the prediction accuracy using all the
features, the accuracy is reduced by 3.1%. Explain that if we
filter out the most representative features in advance, we can
use 45% of the workload to achieve 96% of the original work
efficiency.

V. LIMITATIONS AND THREATS TO VALIDITY

Construct validity.A lot of previous work has shown that
the parameters of the classification technology have an impact
on the performance of the defect model [39]–[42]. Although
the value of ntree we use for the random forest is the default
100, recent studies have shown that the parameters of the
random forest model will not affect our research [41], [42].
The effectiveness of this poses a threat. Recent studies have
pointed out that the choice and quality of data sets may affect
the conclusions of a study [42]–[44], so we chose six open
source data sets, and under-sampling and related data cleaning
to ensure the quality of the data sets , To reduce the impact
of the quality of the data set on the experimental results.

External validity.Although we used data sets from 6 open
source projects, there are, for example, some commercial
projects. Therefore, our project data set may not represent the
verification results of all project data sets, but our data set is
more comprehensive and larger in scale than the data set of
previous research work [7], [8], [26]. I believe that our research
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work is useful in the field of defect prediction. The explanatory
direction has a certain contribution. Of course, we still have
some obvious problems. In the field of defect prediction, there
are many types of features. We may not measure other features.
Other features may also affect the possibility of defects. If
possible, the features are more comprehensive. May further
improve our forecast results.

Internal validity.In the research, we chose Random Forest
as our software defect prediction model. Recent studies have
shown that Random Forest may be the most suitable machine
learning method for software defect prediction [45]. Using
different forecasting methods, the final conclusion may be
slightly biased, but the overall trend should be the same. In
terms of interpretable technology, we use LIME technology.
LIME is actually a locally interpretable method, but it can
interpret the whole from the part. Therefore, our experimental
conclusions may not be applicable to all interpretable methods.
Nevertheless, other interpretability techniques can also be
applied to our data set, which can be explored in future work.

VI. CONCLUSION

In this article, we use the interpretability model to explain
and optimize the defect model. We validate our experiments
through extensive research on six open source projects. Our
research results show that the random forest model in RQ1 can
perform defect prediction very well, reaching an accuracy of
71.52% and a recall rate of 68.88%. In RQ2, we pioneered the
use of the LIME model to interpret the prediction model and
results. The existing instant defect prediction technology only
predicts the possibility of defects in the change, and focuses
on what the predicted defect is, such as the type of defect.
There is no relevant research on the defect type and location.
The defect type describes the reason and characteristics of the
defect. The defect location refers to the module, file, function
or even code line where the defect is located. Knowing the
defect type and location can help developers quickly repair the
defect. We use the LIME model to evaluate the most influential
features, use these features to train the prediction model, and
find that we can use 45% of the previous workload to achieve
96% of the original work capacity, and we hope to be able to
minimize chemical engineering in the future. Pay attention to
the risk of defects, thereby reducing the cost of software defect
prediction. Future research will focus on how to optimize the
distribution of unbalanced data at a deeper level, and how
to optimize the processing process of the integrated learning
algorithm, so as to obtain faster model running time and higher
prediction accuracy.

VII.
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