
HMBFL: Higher-Order Mutation-Based Fault
Localization

Zheng Li†, Butian Shi†, Haifeng Wang†∗, Yong Liu†∗, Xiang Chen‡
†College of Information Science and Technology, Beijing University of Chemical Technology, China

‡School of Information Science and Technology, Nantong University, China
Email: h.f.wang@hotmail.com, lyong@mail.buct.edu.cn

Abstract—Fault localization is one of the most important pro-
cesses in debugging. Among various automated fault localization
techniques, Mutation-Based Fault Localization (MBFL) is one of
the commonly studied that could achieve better performance in
single-fault localization scenarios. However, the MBFL technique
adopted First-Order-Mutants (FOMs) does not perform well in
multiple-fault localization. In this paper, we propose an approach
HMBFL (Higher-Order Mutation-Based Fault Localization) that
first applies Higher-Order-Mutants (HOMs) in fault localization.
To utilize HOMs on fault localization, we present three methods
for calculating statements’ suspiciousness (i.e., Averaging, Max-
ing, and Frequency). Furthermore, to generate more effective
HOMs for fault localization, we propose two strategies that based
on the traditional techniques (i.e., SBFL-guided and MBFL-
guided). Our empirical results on 112 real-world multiple-fault
programs from Codeflaws show that HMBFL outperforms SBFL
techniques and traditional MBFL techniques at the metric of
EXAM and HMBFL place more faults at the top 1, 3, 5 ranks.

Index Terms—Fault localization, High-order mutants, Multiple
faults, High-order mutation-based fault localization

I. INTRODUCTION

Fault localization is one of the most expensive activities in
the software debugging process. To alleviate the human effort
of fault localization, researchers have proposed different fault
localization techniques. Such as Information Retrieval (IR)-
based [1]–[4], Program Spectrum-based [5]–[7], and Mutation-
based [8]–[10]. IR-based techniques treat the bug report as
a query and consider source code elements as a document
collection [1]. Then it ranks elements according to their
textual similarity with the report. Although IR-based tech-
niques have been shown to be as effective as Spectrum-based
techniques [2], there are several issues that avoid them to be
widely used [11]. One issue is IR-based techniques are based
on the assumption that the bug reports provided by the users
can work well as queries, which is satisfied depends on the
type of software considered, the characteristics of the bug,
and so on. Another problem is that most IR-based techniques
locate faults at the file level, leaving developers with a large
amount of code to examine.

Spectrum-Based Fault Localization (SBFL) technique was
first proposed by Reps et al. [12] and has been continuously
researched and improved since then. The core idea is to
execute a set of test cases on the program under test and then
compare the coverage of failed test cases and pass test cases on
the same statement. The possibility of faults in the statement
is calculated and the localization of the faulty statements is

inferred. Although the SBFL technique has many advantages,
simple, automatic, and efficient, the accuracy of localization is
affected by factors such as interference between multiple-fault
and coincidental correctness test cases [13], [14].

Mutation-Based Fault Localization (MBFL) is a technique
based on mutation analysis [15] that works by making syn-
tactic changes on the program under test [16]. Studies have
shown that the fault localization effectiveness of MBFL is
significantly better than that of SBFL [8]. However, most of
the research on the MBFL technique focuses on the first-order
mutation, which is applicable on single faults and artificially
seeded faults. Zou et al. [17] conducted an empirical study
on a dataset containing real faults and found that the MBFL
technique performed worse on most real-world programs.

In real-world scenarios, the faults in programs are more
complex with multiple ones. Xue et al. [13] found that individ-
ual faults interfere with each other in multiple-fault programs,
so it is more difficult to locate faults in multiple-fault programs
than in single-fault programs using existing fault localization
techniques. Debroy and Wong [18] stated that Higher-Order-
Mutants (HOMs) can be employed to address the problem
of multiple-fault in the program. Moreover, Jia et al [19]
found that when they used a search-based approach to HOMs
generation, HOMs could simulate the real faults better than
First-Order-mutants (FOMs). Hence, we employ the HOMs
in this study to improve the fault localization effectiveness in
multiple-fault scenarios.

In this paper, we propose an approach HMBFL (Higher-
Order Mutation-Based FaultLocalization) that first applies
Higher-Order-Mutants (HOMs) in fault localization. To adopt
HOMs on fault localization, we present three statements’
suspiciousness calculation methods (i.e., Averaging, Maxing,
and Frequency) and two strategies for generating effective
HOMs (i.e., SBFL-guided and MBFL-guided).

To verify the performance of HMBFL on multiple-fault
localization, we do experiments on 112 real-world programs
from Codeflaws [20]. Based on the results in our empirical
study, we have found HMBFL can achieve better multiple-fault
localization performance than SBFL techniques and traditional
MBFL techniques. Moreover, our proposed Frequency method
for calculating statements’ suspiciousness and MBFL-guided
generation strategy is effective in fault localization.

The main contributions of this paper are summarized as
follows:

66

2021 8th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/21/$31.00 ©2021 IEEE
DOI 10.1109/DSA52907.2021.00016

• We propose a novel fault localization approach, HMBFL
(Higher-Order Mutation-Based Fault Localization). To
the best of our knowledge, HMMFL is the first to employ
HOMs on fault localization.

• To utilize HOMs on fault localization, we propose three
methods (i.e., Averaging, Maxing, and Frequency) to
calculate the suspiciousness value of statements, and
two strategies (i.e., SBFL-guided and MBFL-guided) to
generate effective HOMs.

• To evaluate the performance of HMBFL, we conduct
the experiment on 112 programs from a real-world
benchmark, Codeflaws. The results show that HMBFL
can achieve better multiple-fault localization performance
than SBFL and traditional MBFL techniques in terms of
the EXAM, Top-1, Top-3, Top-5 metrics. Moreover, our
proposed Frequency method for calculating statements’
suspiciousness and MBFL-guided generation strategy is
effective in fault localization.

• To facilitate the replication of our study and evaluation
of future work, our source code and dataset used in this
paper are all available in the GitHub repository1.

The rest of this paper is organized as follows. Section II
provides the background of multiple-fault localization and
related techniques. Section III presents our proposed methods
and strategies for statements’ suspiciousness calculation and
HOMs generation. Section IV first describes the experiment
setup, then presents the results of the experiment and discusses
threats to the validity of our experiment. Section V overviews
the works related to this study. Section VI finally concludes
this paper with potential future works.

II. BACKGROUND

A. Multiple-fault Localization

Statistics In the last decades, a significant number of studies
have been proposed for localizing multiple-fault. These ap-
proaches identified by Zakari et al. [21] three categories, which
are One-bug-at-a-time (OBA) approach, the parallel approach,
and multi-bug-at-a-time (MBA) approach.

OBA approach is a simple approach that neutralizes a single
fault per debugging iteration and it is performed until all the
faults are found and fixed [22], [23]. Various fault localization
techniques such as SBFL techniques [5], [24] have utilized the
OBA approach in localizing multiple-fault.

Second, the parallel debugging approach is basically divid-
ing the debugging task into small units so as to allow multiple
developers to work on different units [25], such as cluster
the failed test cases into different fault-focused cluster [26].
The fault-focused clusters which composed of both failed
and passed test cases will be given to separate individual
developers to debug in parallel.

MBA approach localizes multiple-fault in a single debug-
ging iteration, unlike the OBA approach needs several itera-
tions [27]. MBA has the advantage of reducing the debugging

1https://github.com/chajishaji/HMBFL

TABLE I
TYPICAL MUTATION OPERATORS

Mutation
Operator Description Example

CRCR Required constant replacement a=b + *p → a=0 + *p
OAAN Arithmetic operator mutation a + b → a * b
OAAA Arithmetic assignment mutation a += b → a -= b
OCNG Logical context negation if(a) → if(!a)
OIDO Increase/Decrease mutation ++a → a++
OLLN Logical operator mutation a && b → a ‖ b
OLNG Logical negation a && b → !(a && b)
ORRN Relational operator mutation a < b → a <= b
OBBA Bitwise assignment mutation a &= b → a |= b
OBBN Bitwise operator mutation a & b → a | b

bool f(int a, int b):
 if (a > b):
 return a ≤ b
 return a > b

bool f(int a, int b):
 if (a > b):
 return a < b
 return a > b bool f(int a, int b):

 if (a < b):
 return a < b
 return a > b

Original

FOM 1

bool f(int a, int b):
 if (a < b):
 return a ≤ b
 return a > b

FOM 2

HOM

Fig. 1. Example of the FOM and HOM

time and reducing the computation overhead of utilizing clus-
tering algorithms in identifying failure-to-fault relationships as
in the case with parallel debugging approach [28]. Follow the
most multiple-fault studies, in this paper, we utilize the OBA
approach in identifying multiple-fault using the HOMs.

B. Mutation-based Fault Localization

Mutation-based fault localization is a widely researched
method of fault localization based on mutation analysis. Muta-
tion analysis is performed by making simple semantic changes
to the program under test and the program with artificially
injected faults are called mutants [15]. The rule that generates
the mutant is known as mutation operator [10], [29]. Table I
lists ten typical C mutation operators proposed by Agrawal
et al. [30]. According to the usage of times of the mutation
operator, the mutants can be classified into two groups: First-
Order-Mutants (FOMs) and Higher-Order-Mutants (HOMs). A
FOM is generated by applying the mutation operator only once
and a HOM is generated by applying the mutation operator
more than once [19]. Noted that a k-HOM is a kth order
mutant that applying k mutation operators on k different
statements.

As shown in Fig. 1, the program is mutated into two FOMs,
which are later combined to form a HOM. If a test case has
the execution behavior of a FOM or HOM different from the
original we say that the FOM or HOM is killed or detected.
Otherwise, we say that the FOM or HOM is notkilled or
live [18].

The traditional MBFL technique consists of four main steps:
(1) Get the statements covered by failed test cases: MBFL

technique first executes a program under test P by a test suite

67

TABLE II
SUSPICIOUSNESS FORMULAS FOR MBFL

Name Formula

Tarantula [24] Sus(m) =

akf
akf+akp

akf
akf+akf

+
akp

akp+anp

Op2 [31] Sus(m) = akf −
akp

akp+anp+1

Jaccard [32] Sus(m) = akf
akf+anf+anp

Ochiai [33] Sus(m) = akf√
(akf+anf)(akf+akp)

Dstar [7] Sus(m) =
a∗
kf

akp+anf

GP13 [6] Sus(m) = akf

(
1 + 1

2akp+akf

)
Naish1 [31] Sus(m) =

{
−1 if akf < |Tf |
|Tp| − akp if akf = |Tf |

T . Next, the coverage information and test results are obtained
for classifying T into pass tests set Tp and fail tests set Tf .
Besides, all statements covered by the failed tests are recorded
as COVf .

(2) Generate and execute mutants: The MBFL employs
mutation operators to seed faults into the statement s in COVf .
The set of mutants mutated from the statement s is denoted
as M(s). Then, all mutants in M(s) are executed against the
tests in T . The results can be divided into Tk and Tn, where
Tk is the set of mutants are killed by T and Tn is the set of
mutants do not killed by T .

(3) Calculating the suspiciousness of program state-
ments: The suspiciousness of the mutant m can be calculated
using different MBFL formulas, which are based on the
following four parameters: anp = |Tn ∩ Tp|, akp = |Tk ∩ Tp|,
anf = |Tn ∩ Tf |, and akf = |Tk ∩ Tf |, where anp denotes
the number of pass tests that cannot killed m, akp denotes
the number of pass tests that killed m, anp denotes the
number of fail tests that cannot killed m, and anf denotes the
number of fail tests that killed m. Table II lists seven popular
MBFL formulas (i.e., Tarantula [24], Op2 [31], Jaccard [32],
Ochiai [33], Dstar [7], GP13 [6], Naish1 [31]). These formulas
are proposed based on the different rule of statistical methods
and studies [34], [35] have shown that there does not exist one
formula outperform the other formulas in any scenario.

(4) Generate statements’ ranking list: The MBFL tech-
nique aggregates the mutant value to the suspiciousness of
the statement s given by the maximum value: Sus(s) =
Maxing(Sus(m1), . . . , Sus(mn)), where m1, . . . ,mn are all
mutants in M(s). Then, MBFL sorts all statements in descend-
ing order based on their suspiciousness value and returns a
ranking list. Developers can find and fix program faults from
top to bottom according to the ranking list.

Based on the description of the above process, we can
find that MBFL works based on the assumption that mutants
killed mostly by failed test cases have a connection with the
program faults. Recent studies [9], [36] also demonstrated
that MBFL could significantly outperform other types of
fault localization techniques (such as spectrum-based fault
localization techniques [8], [36]).

III. OUR APPROACH

A. Motivation

In previous studies, most MBFL techniques were based
on the single-fault assumption. However, empirical studies
have shown that single program failures are often triggered
by multiple-fault in the system. Digiuseppe and Jones [37]
found that multiple-fault negatively affect the accuracy of fault
localization. In addition, Offutt’s findings concluded that it
remains to be determined whether killing nth-order mutants
can detect complex faults [38]. In Debory and Wong’s study,
they found that the reason why their proposed strategy could
not fix multiple-fault in the same program was that they only
considered first-order mutation [18].

Therefore, in this study, we employ HOMs to improve the
effectiveness of multiple-fault localization. Since we are the
first to apply HOMs on fault localization, we first need to solve
the problem of how to calculate statements’ suspiciousness
using HOMs (see Phase 1 of Fig 2). In addition, the space
of HOMs rises exponentially with the order, we are trying
to propose strategies to find more effective HOMs for fault
localization (see Phase 2 of Fig 2). In Phase 3 of Fig 2, we
adopt HOMs in fault localization to produce a ranking list (see
Phase 1 of Fig 2).

B. Statements’ Suspiciousness Calculation Method

In the traditional MBFL process, the suspiciousness of a
statement s is assigned by the maximal value of mutants’
suspiciousness. It can be represented by:

Sus(s) = Maxing(Sus(FOM1), . . . , Sus(FOMn)),

where FOM1, . . . , FOMn are the FOMs generated from s.
From the generation rule of HOMs, a k-HOM is asso-

ciated with k statements that applying mutation operators in
different lines, which introduces the cases of multiple mapping
relationships between the statement s and HOMs associated
with s 2.

In this section, we present three methods to handle the
multiple mapping cases to apply HOMs on fault localization:

(1) Averaging: To reduce the impact of outliers, for each
statement, the suspiciousness of the statement s is assigned by
the averaging value of HOMs’ suspiciousness associated with
s. It can be represented by:

Sus(s) = Averaging(Sus(HOM1), . . . , Sus(HOMm)),

where HOM1, . . . ,HOMn are all HOMs associated with s.
(2) Maxing: Inspired by the idea of the traditional MBFL

technique, a HOM with higher suspiciousness indicates the
statements mutated to have a higher possibility to be faulty.
The statements’ suspiciousness assigned by the maximal value
of HOMs’ suspiciousness. It can be formulated as:

Sus(s) = Maxing(Sus(HOM1), . . . , Sus(HOMm)),

2In this paper, we say a k-HOM is associated with the statement s is
k-HOM generated from mutating s once and mutating other k−1 statements
each time.

68

Generate HOMs HOMs Sus Calculate Stmt. Sus Ranking ListProgram

HOMs

Execution

Sus s

s1

s2

s3

FOM1

FOM2

FOM3

HOM1

HOM2

s1

s2

s3

HOMs

SBFL
guided

MBFL
guided

Sus s f (Sus(HOMs))

Phase 1: Statements’ Suspiciousness
Calculation Method f

Phase 2: HOMs Generation Strategy

Phase 3: HOMs Execution

Program Program Strategy HOMsHOMsFOMs

Fig. 2. Framework Of HMBFL

where HOM1, . . . ,HOMm are all HOMs associated with s.
(3) Frequency: Another method to calculate statements’

suspiciousness is to aggregate the frequency of maximum
value in HOMs’ suspiciousness. This method designed for
breaking the tie of statements with the same maximum value.
It can be represented as:

Sus(s) = Frequency(||{HOMi|Sus(HOMi) = Maxing}||),

where Maxing is the suspiciousness of s computed by
Maxing method, HOMi ∈ {HOM1, . . . ,HOMm} and || · ||
is the number of elements in the set.

To illustrate how to use these methods to calculate the sus-
piciousness of statements, we present an example in Table III.
Table III consists of three statements and each one has three
associated HOMs with their suspiciousness.

For Averaging method, the suspiciousness of s1 is
Sus(s1) = 1.0+0.9+0.5

3 = 0.8, and using Maxing method:
Sus(s1) = Maxing(1.0, 0.9, 0.5) = 1.0. To break the tie of
ranking computed by Maxing method, s1’s suspiciousness is
updated by Sus(s1) = Frequency(||HOM1||) = 1.0.

Another method to improve the statements’ suspiciousness
when adopting HOMs, we combined the suspiciousness as-
signed by FOMs with that assigned by HOMs. The Combined
method can be represented by:

Sus(s)Combined = Maxing(Sus(s)FOMs, Sus(s)HOMs),

where Sus(s)FOMs and Sus(s)HOMs are the statements’
suspiciousness computed by FOMs and HOMs.

C. HOMs Generation Strategy
As mentioned in Section II, a k-HOM is produced by

applying k mutation operators on k different statements. To
generate 2-HOMs for a program with n lines and each line
have one operator (i.e., one FOM), the total number of 2-
HOMs is C(n, 2), which is a combination number. Assume

that n = 50, and the number of 2-HOMs is C(50, 2) = 1225.
In real programs, one line can be applied to mutation operators
in several locations, which leads to a huge space of HOMs.
It is a high computational cost to execute all HOMs against
the tests. To reduce the cost of mutation testing and generate
more effective HOMs, we propose two strategies that make
use of the test information of SBFL technique and traditional
MBFL technique, as shown in Phase 2 of Fig 2.

The idea of these two strategies is a statement with higher
rank indicates higher probability to be faulty. Follow this
intuition, for a program with n statements P = {s1, . . . , sn},
we define weight of a statement s to measure this probability:

weight(s) =
length(Ranking list)− rank(s) + 1

n∑
i=1

rank(si)
,

where length(Ranking list) and rank(s) are the length of
the ranking list and the rank of statements produced by the
SBFL technique or MBFL technique.

We use the weight to guide the generation of HOMs.
Assume to generate m k-HOMs, the specific steps are as
follows:

Step 1: For each statement si in P , the number of k-HOMs
associated to statement si is Num(k-HOMs(si)) = m ×
weight(si).

Step 2: Then, follow the order of programs, we first ran-
domly generate Num(k-HOMs(s1)) k-HOMs associated
with s1. By the same way, we generate Num(k-HOMs(s2))
k-HOMs for next statement s2.

Step 3: The rest of k-HOMs are produced according to
Step 2). Finally, we have generated m k-HOMs for program
P .

69

TABLE III
WORKING EXAMPLE OF THREE STATEMENTS’ SUSPICIOUSNESS CALCULATION METHODS

Statements HOMs HOMs Sus Stmt.Sus
Averaging Rank Stmt.Sus

Maxing Rank Stmt.Sus
Frequency Rank

HOM1 1.0
HOM2 0.9s1
HOM3 0.5

0.8 1 1.0 1 1 2

HOM1 1.0
HOM4 1.0s2
HOM5 0.4

0.8 1 1.0 1 2 1

HOM2 0.9
HOM6 0.5s3
HOM7 0.6

0.7 2 0.9 2 3

For simplify, we named the strategy using SBFL techniques
to calculate weight as SBFL-guided and the strategy using
MBFL techniques to calculate weight as MBFL-guided.

D. HOMs Execution

In the last phase of our approach, we apply the statements’
suspiciousness calculation method and the HOMs generation
strategy in the HOMs execution. In detail, we first generate
the HOMs follow the strategy of SBFL-guided and MBFL-
guided (see Section III-C). Then, all generated HOMs are
executed against the tests to collect killing information. With
the killing information, we calculate the HOMs’ suspicious-
ness using MBFL formulas. Next, we obtain the statements’
suspiciousness by adopting the three calculation methods (see
Section III-B). Finally, we produce a ranking list of statements
by sorting the statements’ suspiciousness in descending order.

IV. EXPERIMENTAL STDUY

A. Research Questions

To evaluate the effectiveness of our proposed approach that
adopted HOMs, we investigate the following four research
questions:

• RQ1: What is the fault localization effectiveness of
MBFL with HOMs when applying different statements’
suspiciousness calculation methods?

• RQ2: How does MBFL with HOMs perform when com-
bining the traditional MBFL’s results in terms of the fault
localization effectiveness?

• RQ3: What is the fault localization effectiveness of
MBFL with HOMs when applying different generation
strategies?

• RQ4: Compared with SBFL and traditional MBFL tech-
niques, how does our approach perform about the fault
localization effectiveness?

RQ1 examines the performance of different calculation
methods of statements’ suspiciousness. RQ2 further studies if
combining FOMs will impact the fault localization of MBFL
with HOMs. RQ3 focuses on evaluating the performance of
two generation strategies for HOMs. RQ4 finally examines the
fault localization effectiveness of our approach.

In our experiments, we use four suspiciousness formulas,
i.e., Ochiai [33], Dstar [7], GP13 [6], Naish1 [31], as SBFL
techniques and MBFL formulas. Of these formulas, Ochiai is

publicly studied in the previous works [9], [16] and Wong et al.
empirically shown that Dstar is optimal to localize single and
multiple faults. The other two formulas of GP13 and Naish1
are proven to be maximal in theory [39].

B. Experimental Setup

1) Subject Programs: We evaluate the effectiveness of our
approach on the real-world benchmark of Codeflaws [20].
Codeflaws [20] consists of 3902 real fault programs out of
7,436 programs selected from the Codeforces3 online database.
Each fault in this benchmark program has rejected ‘faulty’
submission and the accepted ‘corrected’ submission. The pro-
grams with a single fault and cannot detect failures or runtime
errors are excluded. Overall, we consider 112 multiple-fault
programs out of 3,902 ones.

2) Configuration: In our study, we use the GNU gcov
tool [40] to collect coverage information and we develop a
tool to generate FOMs and HOMs, which is publicly available
in Github repositories4. In our tool, we employ mutation
operators suggested by the work of Agrawal et al. [30]. Table I
lists ten typical mutation operators.

We choose to generate HOMs with 2-order since the study
of Nguyen et al. [41] and Wong et al. [42] indicated that the
lower order of mutants has more effective on mutation testing.
Moreover, 2-HOMs have been studies in various works [43],
[44].

For the huge space of HOMs, we have tested the number
of HOMs from one to twenty times that of FOMs in our pre-
experiments. The results showed that HOMs has a better fault
localization effectiveness at ten times with acceptable cost on
our experiment environment. Therefore, we set the number
of HOMs generated as ten times that of FOMs. Overall,
for 112 multiple-fault programs, we first generate 26,003
FOMs applied the mutation operators presented by Agrawal
et al. [30], and then we generate 26,0030 HOMs (ten times
to the number of FOMs) for each HOMs generation strategy
(i.e., random, SBFL-guided, and MBFL-guided), leading to
26, 0030× 3 = 780, 090 2-HOMs in total.

3) Evaluation Metrics: To evaluate the performance of our
proposed approach in this paper on multiple-fault localization,
we use the evaluation metrics EXAM and Top-N. These two

3https://codeforces.com
4https://github.com/chajishaji/HMBFL

70

metrics have been widely used in the previous studies [17],
[45].

EXAM: EXAM is the percentage of program elements
that have to inspected until finding the exact faulty element.
A lower EXAM indicates a better fault localization tech-
nique [17]. The formula of EXAM can be represented by
Equation 1.

EXAM =
rank

number of executable statement
(1)

In Equation 1, rank is the rank of the faulty statement in
the ranking list and number of executable statement is the
total number of statements should be checked. More detail,
rank is formulaed by:

rank =
(i+ 1) + (i+ j)

2
, (2)

where i is the number of non-faulty statements whose suspi-
ciousness value is higher than the faulty statement, and j is
the number of statements that share the same suspiciousness
value with the faulty statement. We take the average of the
first (i+1) and last (i+ j) ranks to determine the rank of the
faulty statement to break the tie.

Top-N: Top-N measures how many faults can be located
within the top N program elements among all candidates [46].
Apparently, a fault localization technique with higher Top-
N is better than others. In the work of Kochhar et al. [47],
they found that 73.58% developers only inspect Top-5 program
elements. Follow the previous study [45], [46], [48], we set
N to 1, 3, 5 to make comparisons.

C. Results Analysis

1) RQ1 (The effectiveness of different calculation meth-
ods): To answer this question, we use EXAM and Top-N
(N is set to 1, 3, 5) to evaluate the performance of three
statements’ suspiciousness calculation methods (denoted by
Averaging, Maxing, and Frequency) proposed in Section III-B.
We generate HOMs by random strategy, i.e., generating HOMs
without any guiding strategy. Besides, we display the results
with four MBFL formulas (i.e., Ochiai, Dstar, GP13, and
Naish1).

In terms of the metric EXAM, the Frequency method
performs better than the other two methods. We compute
the EXAM of three methods for 112 programs and display
the results via a box-plot diagram (see Fig. 3). From the
bottom to the top, each column of these diagrams presents
the minimum, the 1st quartile, the medium, the 3rd quartile,
and the maximum of the EXAM of the respective program.
From Fig. 3, we can see that the Frequency method performs
better than Averaging and Maxing in four formulas, with a
distribution of EXAM closer to the X-axis. Moreover, the
performance of the Averaging method varies with the formula
and Averaging performs better in the formula of Ochiai.
Besides, Maxing is more stable between these formulas with
the worse results.

In terms of the metric Top-1, Top-3, and Top-5, the Fre-
quency method again outperform the Averaging method and

Maxing method. Table IV presents the results of three methods
employing four formulas and the best value are marked by
the background color of a gray color. As shown in Table IV,
Frequency also outperforms Averaging and Maxing in the
metric of Top-1, Top-3, and Top-5, when using the four
formulas. Besides, the Averaging method ranks more faults
than the Maxing method in most cases, but the Maxing method
ranks 2 more faults than the Averaging method in Dstar. The
Maxing method also performs poorly at Top-1, Top-3, and
Top-5.

As mentioned in Section III, the Averaging method takes the
average value of associated HOMs’ suspiciousness as state-
ments’ suspiciousness. The average of these suspiciousness
measures the central tendency of one formula and different
suspiciousness formulas produce different values. Therefore,
the statements’ suspiciousness with the Averaging method
various in different MBFL formulas. The Maxing method takes
the maximal value of associated HOMs’ suspiciousness as
statements’ suspiciousness. If one HOMs with maximal value,
the corresponding statements are all assigned by the maximum,
which leads to the non-faulty statements have a higher rank
and has the worst fault localization performance. However,
the Frequency method breaks the tie of statements with the
same maximal value and alleviates the problem that exists in
the Maxing method, which achieves a better performance than
the Averaging method and the Maxing method.

In summary, the statements’ suspiciousness calculation
method of Frequency performs better than the Averaging
method and the Maxing method at the metric of EXAM and
Top-N.

2) RQ2 (The effectiveness of Combined method): To
answer this question, we compute the EXAM and Top-N for
the Combined method, as mentioned in Section III-B. We
compare the fault localization effectiveness of the Combined
method with the three suspiciousness calculation methods. In
this RQ, we randomly generate HOMs as RQ1 and use four
MBFL formulas.

In terms of the metric EXAM, the Combined method im-
proves the Averaging method and has no significant effect on
Maxing and Frequency. Fig. 4 presents the EXAM distribution
with box-plots. In each box plot of a method, it is divided into
two types: the method without combining the FOMs (None)
and the method with combining the FOMs (Combined). It
can be seen from Fig. 4 that, in all formulas, the Combined
method had no significant effect on the results of Maxing
and Frequency. However, the Combined method improves the
Averaging method in the formula of Ochiai, GP13, and Naish1.
Moreover, the Combined method performs better than the
Frequency method when using Ochiai as the MBFL formula.

In terms of the metrics Top-1, Top-3, and Top-5, the Com-
bined method also performs better on the Averaging method
and has no improvements than Maxing and Frequency. Table V
also shows that the Combined method is large improved the
Averaging method at Top-1 under the Ochiai, GP13, and
Naish1, which are the best results.

As mentioned in Section III-B, the Combined method

71

(a) Ochiai (b) Dstar

(c) GP13 (d) Naish1

Fig. 3. EXAM of three statements’ suspiciousness calculation methods with four formulas

TABLE IV
TOP-N OF THREE STATEMENTS’ SUSPICIOUSNESS CALCULATION METHODS WITH FOUR FORMULAS

Ochiai Dstar GP13 Naish1
Top- Top- Top- Top-Method

1 3 5 1 3 5 1 3 5 1 3 5
Averaging 127 173 191 24 114 167 61 101 131 114 160 181

Maxing 23 106 162 26 109 165 24 107 165 24 107 165
Frequency 129 192 204 129 194 206 127 192 205 127 192 205

assigned the statements’ suspiciousness are based on the
maximum value of FOMs’ suspiciousness and HOMs’ suspi-
ciousness. If there exists some bias in the Averaging method,
the Combined method can alleviate this behaves and improves
the fault localization effectiveness. While the Maxing and
Frequency methods are based on the maximum statistics, so
when combined, no significant improvement occurs.

In summary, the Combined method improves the Averaging
method and has no significant improvements in the Maxing
and Frequency method.

3) RQ3 (The effectiveness of generation strategies): To
answer this question, we explore the performance of three
HOMs generation strategies (i.e., Random, SBFL-guided, and
MBFL-guided) at the metric of EXAM and Top-N.

In this question, we use the Frequency method to calculate
the statements’ suspiciousness based on the results of RQ1.
Besides, we choose the Ochiai formula to calculate the

weight for SBFL and MBFL techniques since the previous
study showed that it performs better [49].

In terms of the metric EXAM, MBFL-guided strategy
outperforms the other two generation strategies. Fig. 5 shows
the performance of different generation strategies for HOMs.
From four formulas in Fig. 5, the EXAM distribution of
MBFL-guided strategy are closer to X-axis that MBFL-
guided outperforms Random and SBFL-guided. Besides, the
SBFL-guided performs better than Random with lower 3rd
quartile, while the Random strategy performs worst in these
cases.

In terms of the metric Top-1, Top-3, Top-5, the MBFL-
guided strategy again outperforms the strategy of Random
and SBFL-guided. Table VI shows that, in four formulas, the
MBFL-guided strategy can rank more faults at the top 1, top
3, and top 5 ranks. Moreover, the SBFL-guided is second best
that locate more faults than the Random strategy. The results of

72

(a) Ochiai (b) Dstar

(c) GP13 (d) Naish1

Fig. 4. Comparison of the Combined method with three calculation methods with four formulas at EXAM

TABLE V
COMPARISON OF THE COMBINED METHOD WITH THREE CALCULATION METHODS WITH FOUR FORMULAS AT TOP-N

Ochiai Dstar GP13 Naish1
Top- Top- Top- Top-Method

1 3 5 1 3 5 1 3 5 1 3 5
None 127 173 191 24 114 167 61 101 131 114 160 181Averaging Combined 175 189 195 32 112 166 161 175 188 161 174 188
None 23 106 162 26 109 165 24 107 165 24 107 165Maxing Combined 23 106 162 26 109 165 24 107 165 24 107 165
None 129 192 204 129 194 206 127 192 205 127 192 205Frequency Combined 129 192 204 129 194 206 127 192 205 127 192 205

MBFL-guided and SBFL-guided indicate that the generation
strategy of HOMs for fault localization is effective.

As mentioned in Section III-C, a statement with higher
SBFL or MBFL suspiciousness are generated more associated
HOMs. And in previous studies [8], MBFL techniques has
more promising fault localization effectiveness than SBFL
techniqus, which indicates that MBFL-guided generation strat-
egy can produce more effective HOMs for fault localization.

In summary, MBFL-guided generation strategy outperforms
SBFL-guided strategy and Random strategy in terms of the
EXAM and Top-N metric.

4) RQ4 (Compared with other fault localization tech-
niques): Based on the results of RQ1, RQ2, and RQ3, we
choose the MBFL-guided strategy to generate HOMs and
the Frequency method to calculate statements’ suspiciousness.
We denote this approach as HMBFL, i.e., Higher-Order-
Mutation-Based Fault Localization. We compare HMBFL with
four SBFL techniques (use four SBFL formulas) and four

traditional MBFL techniques (use four MBFL techniques) at
the metric of EXAM and Top-N. For simplify, we denote the
SBFL technique as SBFL and traditional MBFL technique as
MBFL.

In terms of the metric EXAM, HMBFL outperforms SBFL
techniques and traditional MBFL techniques. We display the
EXAM via the violin plots shown in Fig. 6. In the violin plot,
the X-axis represents different techniques, while the Y -axis
indicates the EXAM. Each block in the violin plot indicates the
distribution of EXAM metric and the corresponding formula.
The breadth of the block represents the data density of
the corresponding value of the Y -axis for all multiple-fault
program. So the wider in the bottom of the block and thinner in
the up of the block indicates that the corresponding technique
has a better fault localization effectiveness.

As shown in Fig. 6, the EXAM distribution of HMBFL
are more gather around X-axis, more concentrated than
SBFL techniques and traditional MBFL techniques, indicating

73

(a) Ochiai (b) Dstar

(c) GP13 (d) Naish1

Fig. 5. EXAM of two HOMs generation strategies with four formulas

TABLE VI
TOP-N OF TWO HOMS GENERATION STRATEGIES WITH FOUR FORMULAS

Ochiai Dstar GP13 Naish1
Top- Top- Top- Top-Method

1 3 5 1 3 5 1 3 5 1 3 5
Random 129 192 204 129 194 206 127 192 205 127 192 205

SBFL-guided 142 191 206 142 190 206 137 186 202 137 186 202
MBFL-guided 166 196 206 166 196 206 164 194 206 164 194 206

that the fault localization effectiveness of HMBFL is much
better than these two kind of techniques. Moreover, traditional
MBFL techniques perform better than SBFL techniques with
more lower EXAM values.

In terms of the metric Top-N, HMBFL again outperforms
SBFL techniques and traditional MBFL techniques. Table VII
shows that HMFL localize more faults with GP13 and Naish1
formulas than other two kind of techniques. In Ochiai and
Dstar formulas, traditional MBFL technique can place more
faults at the top 1 rank (173 and 169 faults especially), while
HMBFL rank more faults in terms of Top-3 and Top-5. In all
these cases, SBFL localize fewer faults compared to HMBFL
and traditional MBFL techniques.

Traditional MBFL techniques treat the mutant (FOM) as a
partial fix or a similar version of faulty programs that can
achieve better performance on single-fault localization [50],
while the real faults (multiple-fault) are more complex and

FOMs are hard to fix these programs or have a large distance to
the correct ones. However, HOMs (2-HOMs) mutates multiple
lines that have a higher probability to fix these programs
and are more similar to the real faults, which improves the
multiple-fault localization effectiveness.

In summary, our proposed approach HMBFL, with the
MBFL-guided generation strategy and the suspiciousness cal-
culation method of Frequency, has the better fault localization
effectiveness than SBFL techniques and traditional MBFL
techniques at the metric of EXAM and Top-N.

D. Threats of Validity

1) Internal Validity: The first threat is the order of HOMs
we used in this paper. Previous high order mutation testing
have applied various orders [38], [41] (from 2-order to 10-
order and more). We limited the 2-HOMs and did not consider
the higher order mutants since Nguyen et al. [41] and Wong

74

(a) Ochiai (b) Dstar

(c) GP13 (d) Naish1

Fig. 6. Comparison of HMBFL with SBFL techniques and traditional MBFL techniques with four formulas at EXAM

TABLE VII
COMPARISON OF HMBFL WITH SBFL TECHNIQUES AND TRADITIONAL MBFL TECHNIQUES WITH FOUR FORMULAS AT EXAM

Ochiai Dstar GP13 Naish1
Top- Top- Top- Top-Method

1 3 5 1 3 5 1 3 5 1 3 5
SBFL 112 129 157 110 127 154 110 126 150 110 126 150
MBFL 173 185 193 169 180 192 158 173 187 158 169 184

HMBFL 166 196 206 166 196 206 164 194 206 164 194 206

et al. [42] have found that the lower order of mutants has
more effective on mutation testing. Moreover, 2-HOMs are
studies in various works [43], [44]. Our results are consistent
with these studies that 2-HOMs are more effective for fault
localization, and we will include higher order mutants in the
future work.

The second threat is the number of HOMs we generated.
We only maintain the number of HOMs ten times to FOMs
since in our pre-experiment showed that it has a better fault
localization effectiveness at this setting. In the future, we will
enlarge the search space of HOMs for fault localization.

2) External Validity: One external validity of our ex-
periment is the representatives of the subject programs we
used. We consider the Codeflaws [20] as our benchmark that
are all written in C language. Although these programs are
real-world, these programs only represent limited classes of

programs. Other programs in the experiment may produce
different results. We will conduct our experiments on other
languages in the future.

Another threat is the implementation correctness of MBFL.
In our experiment, we implemented MBFL strictly based on
the description of the original studies [8], [9] and the actual
fault localization performance is very close to the results in
these studies.

3) Construct Validity: In this experiment, we include four
formulas (i.e., Ochiai, Dstar, GP13 and Naish1) as SBFL tech-
niques and MBFL formulas. There exist other formulas and
fault localization techniques not included. Different formulas
and techniques may have different results. We will include
more formulas and techniques to further validity our approach.

We use metrics of EXAM and Top-N to evaluate the
fault localization effectiveness of a technique. EXAM is the

75

popular evaluating the performance of fault localization tech-
niques [17] and Top-N (other studies [46], [51] refer to acc@n)
is the metric using absolute ranks rather than percentages of
program inspected [45], [46], [51]. The use of other metrics
may produce different results. In the future, we also want to
evaluate the performance of the techniques in terms of other
performance metrics (such as wef@n [46] and MAP [45]).

V. RELATED WORK

A. Fault Localization Techniques

In recent years, fault localization techniques have been
proposed for reducing the cost of software debugging, such
as Machine-learning based [52], IR-based [1], [4], [53],
Spectrum-based [5], Mutation-based [8], [16], and so on.
Among these techniques, IR-based and Spectrum-based tech-
niques are the commonly studied techniques by their light-
weight and effective [4], [6]. Le et al. [54] proposed AML
(Adaptive Multi-modal bug Localization) that utilizes the
technique of IR-based and Spectrum-based. Their results show
that AML performs better than the individual techniques. An
Ngoc et al. [53] developed DNNLOC, combining deep neural
network and information retrieval Moreover, Mutation-based
techniques, MUSE and Metallaxis are two MBFL pioneer
techniques. Both these two techniques are based on mutation
analysis [15], which relies on the assumption that most of the
mutations from “realistic” faults, even if artificially seeded [9].
Our proposed HMBFL is based on the MBFL techniques that
first utilizes the HOMs on fault localization.

B. Higher Order Mutation Testing

Mutant testing is one of the research hotspots in recent years
and has been applied in many fields, Demillo et al. [55] pio-
neered a constraint-based test case generation method, which is
based on control flow analysis and conforming execution. The
concept of HOMs was first introduced by Harman et al. [19].
For the application of higher-order mutation testing, Harman
et al. [56] used HOMs to generate test data, and Gopinath et
al. [57] used HOMs to analyze coupling effects. In terms of
applying HOMs on fault localization, there are no published
studies. To fill the gap in this area of research, we employ
HOMs on fault localization and propose an effective approach
in this paper.

VI. CONCLUSION

In this paper, we propose an approach HMBFL which
uses HOMs for fault localization. To utilize HOMs on fault
localization, we present three statements’ suspiciousness cal-
culation methods (i.e., Averaging, Maxing, and Frequency)
and two generation strategies (i.e., SBFL-guided and MBFL-
guided). We conduct our experiments on 112 real-world
multiple-fault programs. The results show that: 1) The Fre-
quency method performs better than the Averaging method
and Maxing method; 2) The Combined method can improve
the Averaging method but has no significant effect on Maxing
and Frequency; 3) The MBFL-guided strategy outperforms

Random and SBFL-guided strategy that can generate more ef-
fective HOMs for fault localization; 4) Our approach HMBFL,
consist of Frequency method for statements’ suspiciousness
calculation and MBFL-guided strategy for HOMs generation,
performs better than SBFL techniques and traditional MBFL
techniques for multiple-fault localization. In the future, we
first want to further investigate the methodology of HOMs
that have better multiple-fault localization effectiveness. We
second want to include other higher order of mutants (such as
3-HOMs and 4-HOMs) to extend our experimental studies.

ACKNOWLEDGMENT

The work is supported by the National Natural Science
Foundation of China (Grant nos. 61902015, 61872026 and
61672085).

REFERENCES

[1] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization
using latent dirichlet allocation,” Information and Software Technology,
vol. 52, no. 9, pp. 972–990, 2010.

[2] S. Rao and A. Kak, “Retrieval from software libraries for bug local-
ization: a comparative study of generic and composite text models,”
in Proceedings of the 8th Working Conference on Mining Software
Repositories, 2011, pp. 43–52.

[3] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug
reports,” in 2012 34th International Conference on Software Engineering
(ICSE). IEEE, 2012, pp. 14–24.

[4] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving
bug localization using structured information retrieval,” in 2013 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2013, pp. 345–355.

[5] V. Debroy and W. E. Wong, “Insights on fault interference for programs
with multiple bugs,” in 2009 20th International Symposium on Software
Reliability Engineering. IEEE, 2009, pp. 165–174.

[6] S. Yoo, “Evolving human competitive spectra-based fault localisation
techniques,” in International Symposium on Search Based Software
Engineering. Springer, 2012, pp. 244–258.

[7] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2013.

[8] M. Papadakis and Y. Le Traon, “Using mutants to locate” unknown”
faults,” in 2012 IEEE Fifth International Conference on Software Test-
ing, Verification and Validation. IEEE, 2012, pp. 691–700.

[9] ——, “Metallaxis-fl: mutation-based fault localization,” Software Test-
ing, Verification and Reliability, vol. 25, no. 5-7, pp. 605–628, 2015.

[10] Z. Li, H. Wang, and Y. Liu, “Hmer: A hybrid mutation execution
reduction approach for mutation-based fault localization,” Journal of
Systems and Software, p. 110661, 2020.

[11] Q. Wang, C. Parnin, and A. Orso, “Evaluating the usefulness of ir-based
fault localization techniques,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis, 2015, pp. 1–11.

[12] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profiling
for software maintenance with applications to the year 2000 problem,”
in Software Engineering—Esec/Fse’97. Springer, 1997, pp. 432–449.

[13] X. Xue and A. S. Namin, “How significant is the effect of fault
interactions on coverage-based fault localizations?” in 2013 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement. IEEE, 2013, pp. 113–122.

[14] Y. Liu, M. Li, Y. Wu, and Z. Li, “A weighted fuzzy classification
approach to identify and manipulate coincidental correct test cases for
fault localization,” Journal of Systems and Software, vol. 151, pp. 20–37,
2019.

[15] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978.

76

[16] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in 2014 IEEE Seventh Inter-
national Conference on Software Testing, Verification and Validation.
IEEE, 2014, pp. 153–162.

[17] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, 2019.

[18] V. Debroy and W. E. Wong, “Combining mutation and fault localization
for automated program debugging,” Journal of Systems and Software,
vol. 90, pp. 45–60, 2014.

[19] M. Harman, Y. Jia, and W. B. Langdon, “A manifesto for higher order
mutation testing,” in 2010 Third International Conference on Software
Testing, Verification, and Validation Workshops. IEEE, 2010, pp. 80–89.

[20] S. H. Tan, J. Yi, S. Mechtaev, A. Roychoudhury et al., “Codeflaws: a
programming competition benchmark for evaluating automated program
repair tools,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C). IEEE, 2017, pp. 180–
182.

[21] A. Zakari, S. Abdullahi, N. M. Shagari, A. B. Tambawal, N. M. Shanono,
J. Z. Maitama, R. A. Rasheed, A. Adamu, and S. M. Abdulrahman,
“Spectrum-based fault localization techniques application on multiple-
fault programs: A review,” Global Journal of Computer Science and
Technology, 2020.

[22] N. Aribi, N. Lazaar, Y. Lebbah, S. Loudni, and M. Maamar, “A
multiple fault localization approach based on multicriteria analytical
hierarchy process,” in 2019 IEEE International Conference On Artificial
Intelligence Testing (AITest). IEEE, 2019, pp. 1–8.

[23] Z. Li, X. Bai, H. Wang, and Y. Liu, “Irbfl: An information retrieval based
fault localization approach,” in 2020 IEEE 44th Annual Computers,
Software, and Applications Conference (COMPSAC). IEEE, 2020, pp.
991–996.

[24] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002. IEEE, 2002, pp. 467–
477.

[25] J. A. Jones, J. F. Bowring, and M. J. Harrold, “Debugging in parallel,”
in Proceedings of the 2007 international symposium on Software testing
and analysis, 2007, pp. 16–26.

[26] R. Gao and W. E. Wong, “Mseer—an advanced technique for locating
multiple bugs in parallel,” IEEE Transactions on Software Engineering,
vol. 45, no. 3, pp. 301–318, 2017.

[27] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “Spectrum-based multi-
ple fault localization,” in 2009 IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 2009, pp. 88–99.

[28] ——, “Simultaneous debugging of software faults,” Journal of Systems
and Software, vol. 84, no. 4, pp. 573–586, 2011.

[29] H. Wang, B. Du, J. He, Y. Liu, and X. Chen, “Ietcr: An information
entropy based test case reduction strategy for mutation-based fault
localization,” IEEE Access, vol. 8, pp. 124 297–124 310, 2020.

[30] H. Agrawal, R. DeMillo, R. Hathaway, W. Hsu, W. Hsu, E. W. Krauser,
R. J. Martin, A. P. Mathur, and E. Spafford, “Design of mutant operators
for the c programming language,” Citeseer, Tech. Rep., 1989.

[31] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Transactions on software engineering
and methodology (TOSEM), vol. 20, no. 3, pp. 1–32, 2011.

[32] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in Proceed-
ings International Conference on Dependable Systems and Networks.
IEEE, 2002, pp. 595–604.

[33] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of sim-
ilarity coefficients for software fault localization,” in 2006 12th Pacific
Rim International Symposium on Dependable Computing (PRDC’06).
IEEE, 2006, pp. 39–46.

[34] R. Abreu, W. Mayer, M. Stumptner, and A. J. van Gemund, “Refining
spectrum-based fault localization rankings,” in Proceedings of the 2009
ACM symposium on Applied Computing, 2009, pp. 409–414.

[35] T.-D. B. Le, F. Thung, and D. Lo, “Theory and practice, do they match? a
case with spectrum-based fault localization,” in 2013 IEEE International
Conference on Software Maintenance. IEEE, 2013, pp. 380–383.

[36] M. Kooli, F. Kaddachi, G. Di Natale, A. Bosio, P. Benoit, and L. Torres,
“Computing reliability: On the differences between software testing and
software fault injection techniques,” Microprocessors and Microsystems,
vol. 50, pp. 102–112, 2017.

[37] N. DiGiuseppe and J. A. Jones, “On the influence of multiple faults on
coverage-based fault localization,” in Proceedings of the 2011 interna-
tional symposium on software testing and analysis, 2011, pp. 210–220.

[38] A. J. Offutt, “Investigations of the software testing coupling effect,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 1, no. 1, pp. 5–20, 1992.

[39] S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman, “Human compet-
itiveness of genetic programming in spectrum-based fault localisation:
Theoretical and empirical analysis,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 26, no. 1, pp. 1–30, 2017.

[40] Q. Yang, J. J. Li, and D. M. Weiss, “A survey of coverage-based testing
tools,” The Computer Journal, vol. 52, no. 5, pp. 589–597, 2009.

[41] Q.-V. Nguyen et al., “Is higher order mutant harder to kill than first
order mutant? an experimental study,” in Asian Conference on Intelligent
Information and Database Systems. Springer, 2018, pp. 664–673.

[42] W. E. Wong and A. P. Mathur, “Reducing the cost of mutation testing:
An empirical study,” Journal of Systems and Software, vol. 31, no. 3,
pp. 185–196, 1995.

[43] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses vs mutation testing:
an experimental comparison of effectiveness,” Journal of Systems and
Software, vol. 38, no. 3, pp. 235–253, 1997.

[44] M. Papadakis and N. Malevris, “An empirical evaluation of the first and
second order mutation testing strategies,” in 2010 Third International
Conference on Software Testing, Verification, and Validation Workshops.
IEEE, 2010, pp. 90–99.

[45] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 169–180.

[46] T.-D. B Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis.
ACM, 2016, pp. 177–188.

[47] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 165–176.

[48] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2017, pp. 273–283.

[49] Y. Liu, Z. Li, R. Zhao, and P. Gong, “An optimal mutation execution
strategy for cost reduction of mutation-based fault localization,” Infor-
mation Sciences, vol. 422, pp. 572–596, 2018.

[50] D. Shin and D.-H. Bae, “A theoretical framework for understanding
mutation-based testing methods,” in 2016 IEEE International Confer-
ence on Software Testing, Verification and Validation (ICST). IEEE,
2016, pp. 299–308.

[51] Y. Kim, S. Mun, S. Yoo, and M. Kim, “Precise learn-to-rank fault
localization using dynamic and static features of target programs,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 28, no. 4, pp. 1–34, 2019.

[52] W. E. Wong, Y. Shi, Y. Qi, and R. Golden, “Using an rbf neural network
to locate program bugs,” in 2008 19th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2008, pp. 27–36.

[53] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Bug
localization with combination of deep learning and information re-
trieval,” in 2017 IEEE/ACM 25th International Conference on Program
Comprehension (ICPC). IEEE, 2017, pp. 218–229.

[54] T.-D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and
spectrum based bug localization: Better together,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, 2015,
pp. 579–590.

[55] R. A. DeMillo, A. J. Offutt et al., “Constraint-based automatic test data
generation,” IEEE Transactions on Software Engineering, vol. 17, no. 9,
pp. 900–910, 1991.

[56] M. Harman, Y. Jia, P. Reales Mateo, and M. Polo, “Angels and monsters:
An empirical investigation of potential test effectiveness and efficiency
improvement from strongly subsuming higher order mutation,” in Pro-
ceedings of the 29th ACM/IEEE international conference on Automated
software engineering, 2014, pp. 397–408.

[57] R. Gopinath, C. Jensen, and A. Groce, “The theory of composite faults,”
in 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST). IEEE, 2017, pp. 47–57.

77

