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Abstract—Bug severity is important for triagers. Recently, the
text in the summary field (i.e., bug summary) of bug reports is
usually used to extract features, and then bug report severity
prediction models are constructed. In some bug reports, the bug
summary may not contain enough useful information. While the
text field in the description (i.e., bug description) of bug reports
contains detailed information of the bug (e.g., steps to reproduce
the bug, stack traces, and expected behavior). However, the
bug description may contain irrelevant information. Motivated
by the above findings, we propose a novel method EKD-BSP
(Bug Report Severity Prediction by Extracting Keywords from
Description), which uses the bug summary and the keywords
extracted from the bug description to perform severity prediction.
Our empirical study selects two large-scale open-source projects
(i.e., Eclipse and Mozilla) as the empirical subjects. The empirical
results show that EKD-BSP can improve the performance of
F -measure by up to 5.19% after compared with the baselines.

Index Terms—Bug report severity prediction, Bug report
description, Keyword extraction, Text mining

I. INTRODUCTION

With the increasing scale and complexity of software
projects, bugs in software are unavoidable during the pro-
cess of software development and maintenance. The previous
study [1] shows that about 90% of bugs have a serious negative
impact on the developer’s experience and even result in huge
economic loss. Therefore it is particularly important to track
and manage bugs in software projects.

Currently, most of the software projects employ bug track-
ing systems (such as Bugzilla1, JIRA2) to assist in bug man-
agement. When detecting a bug, one will submit a bug report
to the bug tracking system. A bug report generally consists
of ID number, title, report time, severity, assigned developer,
resolution state (e.g., new, assigned, resolved, closed), descrip-
tion, comments (e.g., discussion about the possible solutions),
attachments (e.g., patches, test cases), and ID number of
underlying reports. In the bug reports, severity is an important
field and is often assigned manually by users who submitted
these bug reports. It is critical for developers to set the
reasonable priority of these bug reports. However, users often
fail to assign the reasonable severity of bug reports due to

∗ Xiang Chen is the corresponding author.
1https://www.bugzilla.org/
2https://www.atlassian.com/software/jira

the lack of experience in software development. To address
this problem, researchers [2] [3] [4] [5] [6] aimed to construct
high-quality bug report severity prediction models, which can
predict appropriate severity after analyzing the contents in the
bug reports.

Most of the previous studies [4] [7] [8] performed bug
report severity prediction by using the text in the summary
field (i.e., bug summary). However, Chen et al. [9] found
that the quality of the bug summary has not received enough
attention. For some bug reports, the bug summary may contain
a few words or do not contain enough useful information.
While the text in the description field (i.e., bug description) of
bug reports contains detailed information of bug (e.g., steps
to reproduce the bug, stack traces, and expected behavior).
Therefore, utilizing the information in the bug description
is a potential way to improve the performance of the bug
report severity prediction. In previous studies, Tian et al. [10]
and Otoom et al. [11] used the bug summary and the bug
description for bug severity prediction. But neither of these
two studies investigated the prediction model construction by
considering the information from both the bug summary and
the bug description.

We use an example to show the motivation of our study.
Table I shows a bug report3 from the Eclipse project. From
Table I, we can find the bug summary is “Auth settings for
Docker Hub repository”, which mainly contains keywords
(such as “Auth”, “repository”). However, only considering
this information is not enough to determine the bug report
severity. After analyzing the bug description, the developer
can understand the root cause of this bug. Specifically, this
bug is caused by the user, who does not have enough write
permissions. If this bug is not fixed in time, it will affect
the subsequent project development. Therefore this bug is
a blocker bug. Moreover, not all the information (such as
source code [12], URL, console output information, irrelevant
information) in the bug description is useful for bug report
severity prediction. Therefore, in our study, we resort to the
keyword extraction method to identify useful information in
the bug description.

Based on the above motivation example, we propose a

3https://bugs.Eclipse.org/bugs/show bug.cgi?id=564155
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TABLE I
A BUG REPORT FROM THE ECLIPSE PROJECT

Bug Summary Auth settings for Docker Hub repository

Bug Description Hi,

the Honor project publishes Docker images
to repositories under the Eclipse organization
at hub.docker.com. We have created a new
repository

Eclipse/hono-service-device-registry-file

which I would like to have all Hono committees
write access to.
For that purpose, the ”Hono” team already exists
in the org

Can you please give write access for the
repo to that team?

Can you also please verify that this team
has write access to all of the other

Eclipse/hono-*
repositories? Without write access we cannot
perform our releases...

Thanks,
Kai

novel method EKD-BSP (Bug Report Severity Prediction by
Extracting Keywords from Description), which uses the bug
summary and the keywords extracted from the bug description
to perform bug report severity prediction. EKD-BSP mainly
consists of the model construction phase and model application
phase. In particular, the model construction phase includes
four steps: (1) Text Preprocessing: it uses the standard pre-
processing step, the tag substitution step for text processing
of the bug summary, and the bug description. (2) Keyword
Extraction from the Bug Description: it uses the TextRank
algorithm [13] to extract keywords from the bug description.
(3) Word Embedding: it uses the FastText model [14] to get
the word embedding. (4) Model Construction via Classifier: it
uses the LR (Logistic Regression) classifier to construct the
bug severity prediction model. In the model application phase,
we can use the trained model to predict the severity of the new
bug reports.

In our empirical study, we choose two large-scale open-
source projects (i.e., Eclipse and Mozilla) as our experimental
subjects. According to a recent survey on bug report severity
prediction by Gomes et al. [15], they find 92% of the studies
used the Eclipse project as the experimental subject, and 70%
of the studies used the Mozilla project as the experimental
subject. Therefore, using these two open-source projects can
guarantee the generality of our empirical results. Then we first
conducted empirical studies to evaluate the performance of
our proposed method EKD-BSP by comparing state-of-the-
art baselines in bug report severity prediction. We also design
experiments to verify the effectiveness of component sets (such
as extracting keywords from the bug description, using the LR

as the classifier) in our proposed method EKD-BSP.
Our empirical results show that our proposed method

EKD-BSP can achieve promising performance (i.e., 70.43%
F -measure, 73.81% Precision, and 68.67% Recall for
Eclipse, and 80.09% F -measure, 82.01% Precision, and
78.76% Recall for Mozilla). After compared with the state-of-
the-art baselines, the method EKD-BSP can improve the per-
formance by up to 5.19% in terms of F -measure. Moreover,
we find keywords extracted from the bug report only need to
keep 20% of words in the original bug description and can ef-
fectively improve the prediction performance when compared
with the method only considering the bug summary. Finally,
using the LR classifier can achieve the best performance in
our proposed method.

To our best knowledge, the main contributions of our study
can be summarized as follows:

• We propose a novel method EKD-BSP, which can predict
the bug report severity by additionally using keywords
extracted from the bug description. Specifically, we use
the FastText model [14] to train word embedding for the
bug summary and the bug description. Then we use the
TextRank algorithm [13] to extract the keywords from the
bug description.

• We choose two large-scale open-source projects as our
empirical subjects. Based on empirical results, we find
our proposed method EKD-BSP can achieve better per-
formance than state-of-the-art baselines in the bug report
severity prediction. Moreover, we also show the competi-
tiveness of extracting keywords from the bug description
and using the LR as the classifier in EKD-BSP.

The rest of this paper is organized as follows. Section II
introduces the research background of bug report management
and related work of bug report severity prediction. Section III
shows the details of our proposed method EKD-BSP, including
the model construction phase and the model application phase.
Section IV introduces the experimental setup, including the
experimental subjects, performance measures, and experimen-
tal setting. Section V summarizes the experimental results.
Section VI analyzes potential threats to the validity of our
empirical study. Section VII concludes this paper and discusses
some potential future work.

II. BACKGROUND AND RELATED WORK

In this section, we mainly introduce the background of bug
report management and related work of bug report severity
prediction.

A. Bug Report Management

Currently, bug tracking systems are used to manage bug
reports. Specifically, in Bugzilla, when a bug is first reported,
the initial status of the bug report is set to “Unconfirmed”.
When a triager verifies that this bug is not duplicated and is
a new bug, the status of the bug report is set to “New”. Then
the triager assigns this bug report to an appropriate developer
for bug fixing, and the status is set to “Assigned”. Later, the
assigned developer reproduces the reported bug and then fixes
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Fig. 1. The bug report life-cycle.

this bug. The status is changed to “Resolved”. After that, if
the triager verifies that the bug is fixed, the status is changed
to “Verified”, otherwise the status is changed to “Reopen” to
implement a reassignment. The final status of the bug report
is “Closed” when no occurrence of this bug is reported. The
detailed life-cycle of the bug report is shown in Fig. 1.

In a survey on bug report analysis [16], Jie et al. clas-
sified the previous studies on bug report management from
two perspectives. Specifically, from the reporters’ perspective,
most of the studies focused on improving the quality of bug
reports. From the developers’ perspective, most of the studies
focused on automating bug report triage and fix. In our study,
we mainly focus on bug report severity prediction, which can
improve the quality of the bug reports.

B. Bug Report Severity Prediction

Based on the latest statistical results, the Mozilla project
received 212 new bug reports on average for each week, while
the Eclipse project received 224 new bug reports on average
for each week [17]. To reduce the workload of manual labor
and realize reasonable assignment of bugs, the bug report
severity prediction problem has been studied. The bug report
severity and its corresponding description can be found in
Table II.

In this research topic, the first study was conducted by
Menzies and Marcus [2]. They modeled the bug report severity
prediction task as a classification problem and proposed an
automatic bug severity prediction method by combining text

TABLE II
DETAILED DESCRIPTION OF BUG REPORT SEVERITY

Severity Description

Blocker Bugs that halt the development process and do not have any
work around

Critical Bugs that cause loss of data or severe memory leaks
Major Bugs that are seriously obstacle to work with the software

system
Normal Bugs that are advised to be chosen when the user is not sure

about the bug or if the bug is related to documentation
Minor Bugs that are worth reporting but do not interfere with the

functionality of program
Trivial Bugs that are cosmetic bugs (such as typo in the java docs)
Enhancement Bugs that are the gray areas (such as new features that are

not considered as bug)

mining and machine learning. Then Lamkanfi et al. [3] used
text mining algorithms to construct severity prediction models.
After that, they [4] found MNB (Multinomial Naive Bayes)
classifier with text mining outperforms other considered algo-
rithms. Pushpalatha and Marlakunta [5] used supervised and
unsupervised methods to predict the severity of bug reports.

For the sake of simplicity, the previous studies can be
classified into three categories: extracting features from the
bug report, using feature selection to improve the model
performance, and considering different modeling methods.

The features extracted from the bug report have a high
impact on the performance of the bug report severity prediction
performance. Yang et al. [18] used multiple features (e.g.,
component, product, priority) to predict bug report severity.
Sharma et al. [19] used priority, number of comments, number
of dependents, number of duplicates, complexity, summary
weight, and CC List to predict bug report severity in a cross-
project scenario. Jin et al. [20] used the features from the
bug summary and the bug description for model construction.
In addition to the meta-features used by the above study,
other features (such as report length, emotion words) were
also used by the researchers. Yang et al. [21] integrated stack
traces, steps to reproduce, attachments, report length, and
several quality indicators. Then they explored their influence
on severity prediction performance. Yang et al. [12] analyzed
emotion words and used an EWD-multinomial classifier for
bug report severity prediction. The empirical results showed
the competitiveness of their proposed algorithm. Sabor et
al. [22] combined a neural network model with stack traces
to predict bug report severity. This method can achieve 73%
Accuracy in Eclipse product data and 85% Accuracy in
Eclipse component data. They [23] also used a linear com-
bination of the stack trace and categorical feature similarity.

Some researchers used feature selection [24] [25] [26] [27]
to improve the model performance. Yang et al. [7] used
feature selection methods (i.e., information gain, chi-square,
and correlation coefficient). Roy and Rossi [28] used text
mining together with bi-grams and feature selection to improve
the severity prediction performance of bug reports. Sharma et
al. [29] used two feature selection methods (i.e., information
gain and chi-square) to train the bug report severity prediction
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model. Liu et al. [30] integrated different feature selection
methods to form an ensemble feature selection method. Em-
pirical results of these studies showed that using the ensemble
feature selection method can improve the performance of bug
report severity prediction.

Some researchers considered different modeling methods.
For example, Gou et al. [31] proposed a new method DWKNN
(Distance-Weighted K-Nearest Neighbor) rule. Compared to
the state-of-the-art KNN-based methods, this method can
achieve better performance under different K values. Tian
et al. [10] proposed a new approach leveraging information
retrieval to automatically predict the severity of bug reports.
Zhang et al. [32] proposed a concept profile-based prediction
technique and experimental results show that the proposed
technique can effectively predict the severity of a new bug
report. Zhang et al. [33] utilized a modified REP algorithm
(i.e., REPtopic), K-Nearest Neighbor (KNN) classification to
search the similar bugs and their features to construct the
bug severity prediction models. Tian et al. [34] considered
the problem of inconsistent severity in duplicated bug reports.
Zhang et al. [35] found that most research work adopts a
supervised and data-driven approach. This kind of approach
may fail when the number of the training dataset is limited.
Therefore, they proposed a method to label the severity of bug
reports via active learning and used a sample enhancement
method to train the models. Tan et al. [36] used the classical
retrieval algorithm BM25 to search the data set gathered from
Stack Overflow and selected 500 pairs of high similarity data
for each project to realize the data set augmentation.

Different from the previous study, we conjecture that the
bug description of some bug reports may contain useful infor-
mation for bug severity prediction, which can not be found in
the corresponding bug summary. Based on this conjecture, we
propose a novel method EKD-BSP, which aims to augment
the bug summary by the keywords extracted from the bug
description. Then we want to use the bug reports from real-
world open-source projects to verify the effectiveness of our
proposed method.

III. OUR PROPOSED METHOD

In this section, we propose a novel bug report severity
prediction method EKD-BSP. Compared to previous stud-
ies [6] [12] [37], we combine the bug summary with keywords
extracted from the bug description to predict the severity of
bug reports. In our proposed method EKD-BSP, we model the
severity prediction problem as a binary classification problem.
Specifically, based on Table II, the severity Blocker, Critical or
Major are classified as Severe type. While the severity Minor
or Trivial are classified as Non-Severe type. Note we do not
consider the severity Normal and Enhancement in our study.
More detailed analysis can be found in Section IV-A.

Fig. 2 shows the framework of our proposed method EKD-
BSP. According to this figure, our proposed method consists of
two phases (i.e., the model construction phase and the model
application phase). In the rest of this section, we will show
the details of these two phases.

A. Model Construction Phase

The model construction phase mainly includes four steps:
text preprocessing on the bug summary and the bug de-
scription, keyword extraction from the bug description, word
embedding, model construction via classifier.

1) Text Preprocessing: To improve the performance of
EKD-BSP, we take standard preprocessing step (i.e., tokeniza-
tion, stop-word removal, and lemmatization) for the bug sum-
mary and the bug description. The bug description contains
detailed information of the bug report, such as steps to repro-
duce the bug, stack traces, and expected behavior. However,
not all of this information is useful for model construction.
According to the previous analysis on the bug description,
Chen et al. [9] found that URL requires extra efforts to
analysis, but brings limited benefits in understanding the bug
summary. Moreover, Yang et al. [12] also found analyzing the
source code in the bug description cannot help to achieve better
performance. Finally, in the bug description, the console output
information, which is similar to the source code, also does not
help to improve the performance. Therefore, we use the regular
expression to match the URL, source code, and console output
from the bug description and then use the corresponding tag
to replace them.

For the bug summary, we only take standard preprocessing
step (i.e., tokenization, stop-word removal, and lemmatiza-
tion). The standard preprocessing step is common for text
preprocessing in NLP (Natural Language Processing). Specif-
ically, tokenization is a preliminary processing step of the
original text data and is used to split the bug summary into a
series of words (i.e., tokens). Moreover, this step can remove
the special words (such as punctuation and comma). Stop-
words (such as “the”, “is”, “at”, “which”, “on”) are words that
have high frequency but do not have any real meaning. Re-
moving these stop-words can improve the model performance
and reduce the size of the extracted words. Lemmatization is
used to restore various forms of words to their root forms.
In the natural language, words often have different tenses,
but the meanings of words are similar. Therefore, we take
lemmatization for tokens to reduce the redundancy of the text
information. For example, “make”, “makes”, and “making”
are different tenses of “make”, however, they mean the same
thing.

For the bug description, we take both the tag substitution
step and the standard preprocessing step, which are the same
as the standard preprocessing step used in the bug summary.
The tag substitution step will use corresponding tags to replace
the web URL, file URL, source code, and console output in
the bug description. We show the used regular expressions for
identifying the corresponding tags in Table III. The details of
the tag substitution step are described as follows.

• If the web URL link or file URL link is matched, it will
be replaced with the “url” tag.

• If the source code is matched, it will be replaced with
the “code” tag.
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Fig. 2. The framework of our proposed method EKD-BSP

• If the console output information is matched, it will be
replaced with the “console” tag.

TABLE III
THE REGULAR EXPRESSION FOR IDENTIFYING THE CORRESPONDING TAG

Tag Regular Expression

Web URL [https|http]+:[ˆ\s]*
File URL [file|files]+: / / [ˆ\s]*
Source Code (?<=\{).*(?=\})
Console Output ( / [ˆ\}]* / )

2) Keyword Extraction from the Bug Description: To iden-
tify useful information in the bug description, we resort to
keyword extraction. Because using keyword extraction can
automatically obtain a series of words that can represent the
information of the original document. EKD-BSP uses the
TextRank algorithm [13] for keyword extraction after text
preprocessing of the bug description.

The TextRank algorithm [13] is an unsupervised method.
Specifically, TextRank is an algorithm that represents a given
text and interconnects words with meaningful relations based
on a graph. This algorithm starts with tokenization and part-of-
speech tagging of the words and then passes syntactic filters
(e.g., reserved nouns, verbs) as vertices of the graph. Next
co-occur with a window of N -words to define the relation of
edges in two vertices. After the graph is constructed, based on
the idea of the PageRank algorithm [38], this algorithm will
run for several iterations until it converges. Once a final score
is obtained for each vertex in the graph, vertices are sorted
in the reversed order based on their score and this algorithm
can get the top vertex. This graph-based sorting algorithm is
an essential way to determine the importance of vertices in
a graph based on global information. Therefore, it is a good
way to discover global key information in a document.

Since EKD-BSP involves the information of two text fields
in the bug reports (i.e., the bug summary and the bug descrip-
tion), and our processing of them is slightly different from the
classical text processing. Therefore, to show the processing

details of the bug summary and the bug description by EKD-
BSP, we choose an example to show the processing results,
which can be found in Table IV. In this table, the bug sum-
mary only uses the standard preprocessing step to obtain the
tokens. The bug description takes the tag substitution step to
preprocess the URL, source code, console output information
in the bug report and takes the standard preprocessing step
to obtain the tokens. We use braces to match code snippets,
therefore, the code snippet inside the brace is replaced with
the “code” string in Table IV. Next, we extract keywords from
the bug description. Finally, we show the obtained tokens in
the bug summary and the bug description respectively.

3) Word Embedding: To learn word representation, we use
the FastText model [14]. In the previous studies, most of the
work [10] [28] [39] used TF-IDF for word representation,
which was based on the word frequency, and the learned
semantic information was limited. Recently, the FastText
model can learn word representation while taking into account
morphology [40] [41]. Empirical studies [14] showed that the
FastText model can achieve state-of-the-art performance on
word representation. Specifically, it is represented by consid-
ering subword units, which can represent words by a sum of
its character n-grams. Moreover, the FastText model can be
trained over a billion words in less than ten minutes using a
standard multi-core CPU, which is several orders of magnitude
faster than deep model training. In summary, it has many
advantages (such as simple model construction, fast training
speed, and high model performance) [40].

We construct and train the FastText models for the bug
summary and the bug description respectively. When con-
structing the FastText model for the bug summary, the input
of this model is the bug summary after text preprocessing
and the severity of the bug report. For the bug description,
the input of the FastText model is the bug description after
keyword extraction and the severity of the bug report. Then
we will train these two FastText models (i.e., the bug summary
model FastTsum and the bug description model FastTdes).
These models can generate word vectors for the words in the
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TABLE IV
EXAMPLE FOR TEXT PROCESSING AND KEYWORD EXTRACTION IN THE BUG SUMMARY AND THE BUG DESCRIPTION

Step Substep Bug summary Bug description

Origin Text compiler bug: overwriting
implicitely abstract method
in anonymous inner class

The following code results in a compile time error (build 20020214):

public void Test() {
AbstractTableModel tm = new AbstractTableModel(){

public int getColumnCount(){
return 0;
}
public int getRowCount(){

return 0;
}
public Object getValueAt(int rowIndex,
int column Index){

return null;
}

};
tm.getColumnCount();
// <-- compile time error

}

The method geColumnCount() is undefined for the type
javax.swing.table.AbstractTableModel”

Text Preprocessing
Tag Substitution
Step

No The following code results in a compile time error (build 20020214): public
void Test() { code }.“The method geColumnCount() is undefined for the type
.javax.swing.table.AbstractTableModel”

Standard Prepro-
cessing Step

compiler bug overwrite
implicitely abstract method
anonymous inner class

the following code result compile time error build 20020214 public void test
code the method gecolumncount undefined type javax swing table abstract-
tablemodel

Keyword Extraction No javax following code result compile time error build method gecolumncount
undefined type public void test

Obtained Tokens compiler bug overwrite
implicitely abstract method
anonymous inner class

javax following code result compile time error build method gecolumncount
undefined type public void test

bug summary or the bug description. By summing the word
vectors of words existing in the bug report [36], we can get a
summary embedding Embedsum and a description embedding
Embeddes. Then, we concatenate the embedding Embedsum
and the embedding Embeddes as the embedding of the bug
report Embedbug for the subsequent model training.

4) Model Construction via Classifier: To construct the bug
severity prediction model, we use the LR (Logistic Regres-
sion) classifier. LR is a classical statistics-based classification
method, which can be used in the binary classification problem
or the multi-class classification problem. Given a new bug
report, its probability of severity can be computed as follows:

P (y = k|x) = exp (wkx+ bk)

1 +
∑K−1

k=1 exp (wkx+ bk)
,

k = 1, 2

(1)

where x represents the input embedding (i.e., the bug report
embedding Embedbug), and y represents the label (i.e., Severe
or Non-Severe). In addition, wk and bk are the two parameters
in this method.

In our experiment, we classify the severity into two types:
Severe and Non-Severe. Therefore, the Severe probability
of a bug report can be computed by Equation (2) and the

Non-Server probability of a bug report can be computed by
Equation (3):

P (y = 1|x) = exp (wkx+ bk)

1 + exp (wkx+ bk)
(2)

P (y = 0|x) = 1

1 + exp (wkx+ bk)
(3)

The reasons we choose LR as the classifier to construct
the bug report severity prediction model can be summarized
as follows. First, the computational cost of using LR is
low [42] when compared with the deep learning method.
Second, previous work [43] showed that LR is more suitable
than NB (Naive Bayesian) on large-scale datasets. Thirdly,
LR can achieve promising performance in this task and the
detailed analysis can be found in Section V-D.

B. Model Application Phase

Once the prediction model is trained, we can apply it to the
new bug reports for predicting the severity. Given a new bug
report, for the bug summary, we take the text preprocessing
step. For the bug description, we take the text preprocessing
step and keyword extraction step. Then based on the above
results, we perform the word embedding step using the trained
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FastText model to convert and concatenate embeddings as the
bug report embedding Embedbug . Finally, we can use the
trained bug report severity prediction model to predict the
severity of this new bug report.

IV. EXPERIMENTAL SETUP

In our empirical study, we aim to evaluate our proposed
method EKD-BSP with two goals. The first goal is to evaluate
the performance of EKD-BSP by comparing the state-of-the-
art baselines in the previous bug report severity prediction
studies. The second goal is to analyze the impact of different
component settings in our proposed method EKD-BSP.

Based on these two goals, we design the following four
research questions (RQs):

RQ1: Can our proposed method EKD-BSP outperform
the state-of-the-art baselines in the bug report severity
prediction?

RQ2: Can extracting keywords from the bug description
help to improve the performance of our proposed method
EKD-BSP?

RQ3: Whether our proposed method can extract useful
information from the bug description?

RQ4: How the choice of the classifier influences the
performance of our proposed method EKD-BSP?

To answer these four RQs, we first collected two commonly-
used large-scale open-source projects as our experimental
subjects (in Section IV-A). Then we evaluate the performance
of our proposed method EKD-BSP and the baselines in terms
of performance measures (in Section IV-B). We follow the
experimental setting to achieve the experimental results (in
Section IV-C).

A. Experimental Subjects

We collected bug reports from two large-scale open-source
projects (i.e., Eclipse and Mozilla). Specifically, Eclipse4 is an
integrated development environment (IDE) used in computer
programming. Mozilla5 is an open-source software project that
contains several popular products (e.g., Firefox, Thunderbird).
These tools have been widely used by developers, therefore,
the quality of these bug reports can be guaranteed [3]. More-
over, these projects also have been widely used in previous
studies on bug report severity prediction. In a recent sur-
vey [15], Gomes et al. found that the Eclipse project has been
used in 92% of previous studies, while the Mozilla project has
been used in 70% of previous studies.

We downloaded the bug reports of these two projects from
the Bugzilla system by visiting URL6, which includes bug ID,
the bug summary, status, and the bug severity. Then we only
select the bug reports, whose status is ”Closed” or ”Fixed”
following Zhang et al.’s suggestion [33]. However, the bug
description can not be directly downloaded from this URL.

4https://www.Eclipse.org/
5https://www.Mozilla.org/en-US/
6https://www.bugzilla.org/installation-list, the data of the Eclipse project is

accessed in December 31, 2020 and the data of the Mozilla project is accessed
in January 4, 2021.

Therefore, we used the crawler to collect the bug description
according to the Bug ID.

The severity of the bug report obtained from Bugzilla
includes Blocker, Critical, Major, Normal, Minor, Trivial to
Enhancement. The description of these severities can be found
in Table II. Note that we remove the bug reports whose severity
is Normal or Enhancement. The reasons can be summarized
as follows. (1) The Normal is the default value of the bug
report severity. For some novices, they tend to use this severity
value directly. Therefore, this value can not truly reflect the
actual severity of the bug report. (2) The bug reports with
Enhancement severity mean these bug reports do not contain
real bugs [3].

For the rest of the five severity, we categorize them into
two classes, which is consistent with previous studies [6] [35].
Specifically, the severity Blocker, Critical or Major is classified
as Severe type. While the severity Minor or Trivial is classified
as Non-Severe type.

Finally, the statistical information of our chosen experimen-
tal subjects can be found in Table V. In this table, we show
the number of bug reports for different severity for these
two projects respectively. In summary, the Eclipse project
contains 29,397 bug reports with Severe type and 9,485 bug
reports with Non-Severe type. While for the Mozilla project,
it contains 22,094 bug reports with Severe type and 8,951 bug
reports with Non-Severe type.

B. Performance Measures

To evaluate the performance of EKD-BSP and baselines,
we use F -measure, Precision and Recall as the perfor-
mance measures. These performance measures have also been
commonly used in previous bug report severity prediction
studies [6] [15].

In this problem, we treat the bug reports with Severe type
as the positive class and the bug reports with Non-Severe type
as the negative class. Therefore, the confusion matrix for bug
report severity prediction can be found in Table VI. In this
confusion matrix, TP denotes the number of bug reports with
Severe type, which are predicted correctly; FN denotes the
number of bug reports with Severe type, which are predicted
incorrectly; FP denotes the number of bug reports with Non-
Severe type, which are predicted incorrectly; TN denotes
the number of bug reports with Non-Severe type, which are
predicted correctly.
Precision returns the ratio of the number of the bug reports

with the Severe type that are correctly classified as Severe type
to the number of the bug reports that are classified as Severe
type. It can be defined as:

Precision =
TP

TP + FP
(4)

Recall returns the ratio of the number of the bug reports
with the Severe type that are correctly classified as Severe type
to the total number of the bug reports with the Severe type. It
can be defined as:
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TABLE V
THE STATISTICAL INFORMATION OF THE EXPERIMENTAL SUBJECTS

Project
Severe Non-Severe

Blocker Critical Major Total Minor Trivial Total

Eclipse 3,816 6,939 18,642 29,397 6,912 2,573 9,485
Mozilla 2,641 11,350 8,103 22,094 5,792 3,159 8,951

TABLE VI
CONFUSION MATRIX FOR BUG REPORT SEVERITY PREDICTION

Predicted
Severe Non-Severe

Actual
Severe TP : True Positives FN : False Negatives
Non-Severe FP : False Positives TN : True Negatives

Recall =
TP

TP + FN
(5)

There exists a trade-off between Precision and Recall
in practice. In most cases, a higher value of Precision
means a lower value of Recall and vice versa. Here we use
F -measure, which is the harmonic mean between Precision
and Recall, to evaluate the performance of the constructed
models. It can be defined as:

F -measure = 2× Precision×Recall

Precision+Recall
(6)

C. Experimental Setting

For each project, we take the first 80% of bug reports as
the training data and the remaining 20% of bug reports as the
test data in chronological order [36]. For the chronological
order, we order these bug reports according to the last change
time of these bug reports. Using this data split method, we
can use historical bug reports to predict the severity of new
bug reports, which can reflect the real application scenarios.

Since different parameter settings in our proposed method
EKD-BSP can affect the model performance, we set the value
of the parameters as follows. For the FastText model of word
embedding step, each word is represented as a bag of character
n-gram. In our study, we set it to 3 based on our preliminary
exploration. In addition, the dimension of word embedding in
the FastText model is set as 10 according to the suggestions
provided by Joulin et al. [14]. For the remaining parameters,
we use the default value.

Our experimental study is performed on the platform with
the CPU Intel(R) Core(TM) i5-6300HQ, 24 GB memory, and
Windows 10 Operation System.

V. RESULTS ANALYSIS

A. Result Analysis for RQ1

RQ1: Can our proposed method EKD-BSP outperform
the state-of-the-art baselines in the bug report severity
prediction?

To answer this RQ, we compare our proposed method EKD-
BSP with the baselines in previous bug report severity predic-
tion studies. According to a recent survey [15], 74% of the
studies only considered the bug summary, and the classifiers
NB (Naive Bayesian) and KNN (k-Nearest Neighbor) are top-
2 classifiers used in previous studies (i.e., in 44% of the
studies). Therefore, we consider NB and KNN as the first two
baselines. Since EKD-BSP uses LR as the classifier, we further
consider LR as the third baseline. Finally, in addition to the
traditional classifiers (e.g., NB, KNN, LR), the deep learning
method LSTM (Long Short-Term Memory) has also been used
in a recent study [36]. Therefore, we consider LSTM as the
fourth baseline.

Specifically, NB is a classification method that uses knowl-
edge of probability and statistics. It decides to which class an
instance belongs based on the Bayesian algorithm of condi-
tional probability. NB assumes that given the class, the value
of the features is independent of other features [4] [44] [45].
KNN is an instance-based lazy learning method. It processes
the available instances (or neighbors) based on its similarity
measure to the k-nearest neighbors [23] [46]. In general, KNN
uses euclidean distance to calculate the proximity between
instances. LSTM is a deep learning method. It is a special
kind of RNN (Recurrent Neural Network), which is capable
of learning long-term dependencies. LSTM uses four neural
network layers, interacting in a very special way to achieve
the classification [36].

For the baselines NB, KNN, and LR, the FastText model
is used to represent the word embedding to ensure a fair
comparison with our proposed method EKD-BSP. While for
the baseline LSTM, its default embedding is used to realize
the word vector representation.

The comparison results between our proposed method with
four baselines can be found in Table VII. In this table, we can
find that our proposed method EKD-BSP can achieve better
performance than all the baselines. For the Eclipse project,
EKD-BSP can achieve the performance of 70.43%, 73.81%,
and 68.67% in terms of F -measure, Precision and Recall
respectively. Compared with the baselines, the proposed
method EKD-BSP can improve the performance by up to
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5.19%, 8.57%, and 4.50% in terms of F -measure, Precision
and Recall respectively. For the Mozilla project, EKD-BSP
can achieve the performance of 80.09%, 82.01%, and 78.76%
in terms of F -measure, Precision and Recall respectively.
Compared with the baselines, the proposed method EKD-BSP
can improve the performance by up to 4.54% and 7.18%
in terms of F -measure and Precision. Though EKD-BSP
cannot achieve the best performance in terms of Recall, the
performance of EKD-BSP is still in second place, and the gap
with the best baseline NB is very small.

TABLE VII
COMPARISON RESULTS BETWEEN OUR PROPOSED METHOD EKD-BSP
WITH FOUR BASELINE METHODS IN TERMS OF THREE PERFORMANCE

MEASURES

Project Method F-Measure(%) Precision(%) Recall(%)

Eclipse

NB 66.02 65.24 68.05
KNN 65.61 67.36 64.62
LR 65.73 69.83 64.17
LSTM 65.24 65.88 64.76
EKD-BSP 70.43 73.81 68.67

Mozilla

NB 75.55 74.83 79.42
KNN 75.90 77.09 75.02
LR 76.58 78.66 75.24
LSTM 75.77 76.10 75.48
EKD-BSP 80.09 82.01 78.76

Summary for RQ1: EKD-BSP can outperform four
state-of-the-art bug report severity prediction baselines.

B. Result Analysis for RQ2

RQ2: Can extracting keywords from the bug description
help to improve the performance of our proposed method
EKD-BSP?

Based on a recent survey, in the previous studies of the
bug report severity prediction, 74% of the related studies only
extract features from the bug summary [15]. In EKD-BSP, we
use keywords extracted from the bug description to enhance
the bug summary. Therefore, we design this RQ to investigate
whether extracting keywords from the bug description can
improve the performance of bug report severity prediction.
In this RQ, we use summ to denote the EKD-BSP method,
which only considers the bug summary. Then we use sumk to
denote the EKD-BSP method, which considers both the bug
summary and the keywords extracted from the bug description.

The comparison results between summ and sumk can be
found in Table VIII. We can find in terms of three performance
measures, the method sumk can improve the performance for
both two projects. Specifically, for the Eclipse project, the
performance can be improved by 3.56%, 2.95% and 3.44%
in terms of F -measure, Precision, Recall respectively. For
the Mozilla project, the performance can be improved by
3.45%, 3.27% and 3.46% respectively in terms of F -measure,
Precision, Recall respectively.

TABLE VIII
THE COMPARISON RESULTS BETWEEN summ AND sumk

Project Method F-Measure(%) Precision(%) Recall(%)

Eclipse
summ 66.87 70.86 65.23
sumk 70.43 73.81 68.67

Mozilla
summ 76.64 78.74 75.30
sumk 80.09 82.01 78.76

Summary for RQ2: Additionally using the keywords
extracted from the bug description can improve the
performance of EKD-BSP.

C. Result Analysis for RQ3

RQ3: Whether our proposed method can extract useful
information from the bug description?

The bug description is the supplement of the bug summary
and it may contain useful information, which cannot be found
in the bug summary. Based on the analysis result in RQ2, we
can find using the keywords extracted from the bug description
can help to improve the performance of our proposed method
EKD-BSP. However, keywords are selected from the bug
description, which may lose the information of the original
bug description. Therefore, we want to investigate whether
our proposed method can extract useful information from the
bug description. In this RQ, we use sumd to denote the EKD-
BSP method, which considers both the bug summary and the
original bug description. Then we use sumk to denote the
EKD-BSP method, which considers both the bug summary
and the keywords extracted from the bug description.

We show the comparison results between sumd and sumk
in Table IX. In this table, we can find in terms of three
performance measures, the method sumk can improve the
performance for both two projects. Specifically, for the Eclipse
project, the performance can be improved by 1.59%, 1.12%
and 1.61% in terms of F -measure, Precision, Recall re-
spectively. For the Mozilla project, the performance can be
improved by 1.64%, 1.45% and 1.70% respectively in terms
of F -measure, Precision, Recall respectively.

TABLE IX
THE COMPARISON RESULTS BETWEEN sumd AND sumk

Project Method F-Measure(%) Precision(%) Recall(%)

Eclipse
sumd 68.84 72.69 67.06
sumk 70.43 73.81 68.67

Mozilla
sumd 78.45 80.56 77.06
sumk 80.09 82.01 78.76

Except for performance comparison, we also analyze the
ratio of selected words after extracting keywords from the bug
description. Supposing the original bug description contains
numd words and extracted keywords contain numk words,
the ratio is numk/numd. Fig. 3 shows the distribution of the
ratio of the selected words for these two projects. In this figure,
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Fig. 3. The distribution of the ratio of the selected words for two projects

Fig. 4. The word number distribution of the bug description for two projects

we can find that the ratio of the selected words after extracting
keywords is about 20%.

Then we use the scatter chart to analyze the word number
distribution of the bug summary, the bug description, and the
keywords extracted from the bug description. The final results
can be found in Fig. 4, Fig. 5, and Fig. 6. In these figures, the
horizontal axis shows the word number, and the vertical axis
shows the number of corresponding bug reports.

Fig. 4 shows the word number distribution of the bug
description. In this figure, we limit the maximum value of
the word number to 200, since the word number of some
bug descriptions can even up to 8000. It can be found that
in the bug description, most of the bug reports range from 20
to 60. Fig. 5 shows the word number distribution of the bug
summary. In this figure, we can find most of the bug reports
ranges from 7 to 10. Fig. 6 shows the word number distribution
of the keywords extracted from the bug description. In this
figure, we can find most of the bug reports contains about
15 words. For the Eclipse project, the number of bug reports
with 15 words is about 1200. For the Mozilla project, the
number of bug reports with 15 words is about 1000. Moreover,
when the length of keywords is more than 20, there is a linear

Fig. 5. The word number distribution of the bug summary for two projects

Fig. 6. The word number distribution of the keywords extracted from the bug
description for two projects

downward trend, which is similar to the distribution of the
bug summary. Therefore, after keyword extraction, the word
number distribution of the bug description is similar to the
word number distribution of the bug summary.

Summary for RQ3: Using keyword extraction (i.e.,
only keep 20% of words in the original bug descrip-
tion) can help to extract useful information and then
improve the performance of EKD-BSP.

D. Result Analysis for RQ4

RQ4: How the choice of the classifier influences the
performance of our proposed method EKD-BSP?

In our proposed method EKD-BSP, the classifier has a non-
ignorable impact on the performance of the constructed bug
report severity prediction model. In RQ4, we consider three
different classifiers (i.e., NB, KNN, and LR) for EKD-BSP.
To guarantee a fair comparison, we use the same FastText

51



model to represent the word embedding and use the same
experimental setup.

The comparison results of using different classifiers can be
found in Table X. From Table X, we can find that the LR clas-
sifier can achieve the best performance in terms of F -measure
and Precision. Specifically, in terms of F -measure, the
classifier LR can improve the performance at most 2.80%
and 2.21% for the Eclipse project and the Mozilla project
respectively. In terms of Precision, the classifier LR can
improve the performance at most 6.51% and 4.94% for the
Eclipse project and the Mozilla project respectively. Though
in terms of Recall, the classifier LR cannot achieve the best
performance. However, LR can achieve the best performance
in Precision and then result in the best performance in
F -measure.

TABLE X
THE COMPARISON RESULTS OF USING DIFFERENT CLASSIFIERS FOR

EKD-BSP

Project Classifier F-Measure(%) Precision(%) Recall(%)

Eclipse
NB 67.63 67.30 72.45
KNN 69.58 73.00 67.86
LR 70.43 73.81 68.67

Mozilla
NB 77.88 77.07 82.14
KNN 78.98 80.89 77.66
LR 80.09 82.01 78.76

Summary for RQ4: By using LR as the classifier,
EKD-BSP can achieve the best performance.

VI. THREATS TO VALIDITY

In this section, we identify potential threats, which may
influence the validity of our empirical results. These threats
include internal threats, construct threats, and external threats.
Internal Validity. The internal validity is the potentials defects
in the implementation of our proposed method. To alleviate
this threat, we performed code inspection and software testing.
Moreover, we also used mature libraries (such as NLTK7 and
skit-learn8.
Construct Validity. The construct validity is the performance
measures for evaluating the performance of our proposed
method. To alleviate this threat, we choose three performance
measures (i.e., F -Measure, Precision, and Recall), which
have been commonly used in previous bug report severity
prediction studies.
External threats. The first external validity is the choice of
experimental subjects. To alleviate this threat, we use the two
most widely used real-world open-source subjects (i.e., Eclipse
and Mozilla). The reasons can be summarized as follow. First,
they were used in previous bug report severity prediction

7http://www.nltk.org/
8https://scikit-learn.org/stable/

studies [3] [10] [15] [32]. Second, these two projects are
popular and have a large number of high-quality bug reports.
In the future, we will use other projects (such as OpenOffice,
Netbeans) to verify the effectiveness of our proposed method.
The second external validity is the setting of parameters in our
proposed method. To alleviate this threat, we set the parameter
value based on our preliminary exploration or based on the
suggestions by previous studies [14].

VII. CONCLUSION AND FUTURE WORK

Through manual observation, we find that the bug summary
of some bug reports may contain a few words or may not
contain enough useful information, which is not helpful to
construct high-quality bug report severity prediction mod-
els. While the bug description contains detailed information.
Therefore, We propose a novel method EKD-BSP, which uses
the bug summary and the keywords extracted from the bug
description to perform bug report severity prediction. We
use two large-scale open-source subjects (i.e., Eclipse and
Mozilla) to evaluate the performance of our proposed method.
The results show that EKD-BSP can effectively predict the
severity of bug reports. Specifically, it can achieve 70.43%
F -measure for Eclipse and 80.09% F -measure for Mozilla
by only keeping 20% of words in the original bug description.
Moreover, we also show the competitiveness of extracting
keywords from the bug description and using the LR as the
classifier in EKD-BSP.

In the future, we first want to evaluate the performance
of our proposed method by considering more large-scale
commercial and open-source projects. Second, we want to
further improve the performance of our proposed method by
using more advanced word representation methods. Third, we
want to further model the bug report severity prediction as
a multi-classification problem, which is a more challenging
research problem. Its practicability may be slightly higher than
modeling this issue as a binary classification problem since
bug reports often have multiple severities.
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