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Abstract—In this paper, we summarize the so-called Burr-
type software reliability models (SRMs) based on the non-
homogeneous Poisson process (NHPP) and comprehensively eval-
uate the model performances by comparing with the existing
NHPP-based SRMs. Two kinds of software fault count data are
considered; fault-detection time-domain data and fault-detection
time-interval data (group data). For 8 data sets in each fault
count type, we estimate the model parameters by means of the
maximum likelihood estimation and evaluate the performance
metrics in terms of goodness-of-fit and prediction. It is shown
that the Burr-type NHPP-based SRMs could show the better
performances than the existing NHPP-based SRMs in many
cases.

Keywords: software reliability models, non-homogeneous
Poisson processes, Burr-type distributions, goodness-of-fit per-
formance, predictive performance.

I. INTRODUCTION

In the typical waterfall development model, the soft-
ware development process consists of 5 steps: (i) require-
ment/specification analysis, (ii) preliminary and detailed de-
sign, (iii) coding, (iv) testing/verification, and (v) maintenance.
In the testing phase, especially, software faults are detected and
removed as much as possible to meet high software reliability
requirements. In other words, the success of software testing
leads to guarantee the quality of software. Since the software
reliability is considered as one of the most fundamental and
significant attributes of software quality, considerable atten-
tion has been paid to improve the software testing. At the
same time, since the software testing is quite expensive, the
quantification of software reliability is also another important
issue in the verification phase. Since the quantitative software
reliability is defined as the probability that software failures
caused by faults do not occur in a given time interval after the
release, it is common to describe the probabilistic behavior of
the fault-detection process in testing phases by any stochastic
counting process. The software reliability defined in the above
cannot be measured directly in the field, so that stochastic
models, which are called software reliability models (SRMs),
can be utilized to assess the quantitative software reliability.
In fact, a great number of SRMs have been developed to con-
trol/monitor software testing processes as well as to evaluate
the quantitative software reliability during the last four decades
[22], [24].
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It is well known that non-homogeneous Poisson process
(NHPP)-based SRMs have been widely used to describe the
behavior of the cumulative number of software faults. The
representative NHPP-based SRMs are characterized by the
mean value functions, which are proportional to the cumulative
distribution functions (CDF) of software fault-detection time.
Since the seminal contribution by Goel and Okumoto [10],
many authors proposed NHPP-based SRMs under different
model assumptions. The representative NHPP-based SRMs
assumed the exponential CDF [10], the gamma CDF [43], [44],
the truncated-logistic CDF [26], the log-logistic CDF [12],
the Pareto CDF [1], the truncated-normal CDF [28], the log-
normal CDF [3], [28], the extreme-value CDFs [27] including
the Weibull CDF [11].

It is worth noting that the above CDFs are the representative
lifetime distribution functions to model the time to failure in
reliability engineering. On one hand, up to the present stage,
we have known that no unique SRM, which could fit every
software fault count data, was found yet, and that the best
SRM strongly depended on the kind of software fault count
data. Hence, one research direction was to provide a general
modeling framework to describe the software fault-detection
process. Langberg and Singpurwalla [20], Miller [23], Chen
and Singpurwalla [8] showed that the existing SRMs could be
categorized into the Bayesian model, order statistics model,
and self-exciting point process, respectively. Focusing on the
NHPP-based SRMs, Gokhale and Trivedi [13] proposed a
coverage based-NHPP to interpret the CDF of software fault-
detection time. Huang et al. [14] found that the mean value
function of NHPP-based SRMs can be represented by several
kinds of algebraic mean operators. Xiao et al. [42] gave a
unified modeling framework of the exponentially shaped mean
value function by introducing the equilibrium distribution.
Okamura and Dohi [31] developed another unified approach
to approximate the CDF of software fault-detection time by
the phase-type distributions.

However, it is emphasized that the unification approach does
not always resolve the model selection problem because it
never suggests which SRM is best in terms of goodness-of-
fit and predictive performances. In other words, the model
selection from the parametric forms such as [1], [3], [10]-
[12], [26]-[28], [43], [44] is still needed to determine the best



SRM in the actual software reliability management, where
the underlying fault-detection time belongs to a generalized
exponential family or the extreme-value distribution family.
The primary purpose of this paper is to summarize the so-
called Burr-type SRMs based on the NHPP and evaluate the
model performances comprehensively by comparing them with
the existing NHPP-based SRMs. We assume the Burr-type
III, VI, VII, VIII, IX, X, and XII distributions to describe
the software fault-detection time distribution and compare the
goodness-of-fit and predictive performances with the well-
known 11 SRMs [29].

The rest of this paper is organized as follows. Section
IT summarizes the related work on the Burr-type SRMs. In
Section III, we give the definition of NHPP-based SRM and
the parameter estimation based on the maximum likelihood
method, where two kinds of software fault count data are con-
sidered; fault-detection time-domain data and fault-detection
time-interval data (group data). Section IV introduces the
definition of the Burr-type distributions and their associated
NHPP-based SRMs, where some of them are newly proposed
in this paper. Section V is devoted to numerical examples to
compare our Burr-type NHPP-based SRMs with the existing
ones. For 8 data sets in each fault count type, we estimate
the model parameters by utilizing the maximum likelihood
estimation and evaluate the performance metrics in terms of
goodness-of-fit and prediction. We also assess the quantita-
tive software reliability with all the NHPP-based SRMs and
compare the results. Finally, the paper is concluded with some
remarks in Section VI.

II. RELATED WORK

Burr [7] proposed an interesting family of continuous
probability distributions, including 12 types of CDFs (I ~
XII), which yield various probability density shapes. Since the
Burr-type distributions have monotone and/or unimodal failure
rates, some of them have been often used for lifetime data
analysis [39], [45]. Abdel-Ghaly et al. [2] applied the Burr-
type XII distribution to software reliability growth modeling
for the first time, where they concerned the generalized order
statistics SRM [23] and the Bayesian inference, and further
considered an NHPP-based SRM with the Burr-type XII fault-
detection time distribution for one-stage looks ahead prediction
with the fault-detection time-domain data. Kim and Park [17]
and Kim [18] also assumed the Burr-type XII fault-detection
time distribution in the NHPP-based SRM and applied it to
the optimal software release problem and statistical process
control chart, respectively. Ann [6] treated both the order
statistics-based and NHPP-based SRMs with the Burr-type
XI1I distribution with the fault-detection time-domain data and
compared them in terms of the data fitting by U-plot and Y-
plot using Kolmogorov distance [22].

Prasad et al. [32] also conducted the maximum likelihood
estimation for the NHPP-based SRM with the Burr-type XII
distribution and analyzed 5 reference data sets with the fault-
detection time-domain data. The same authors [33] sequen-
tially predicted the number of software fault counts with

the same model and examined a statistical process control
chart in a fashion similar to Kim [18]. Prasad et al. [34]
analyzed the fault-detection time-interval data (group data)
with the Burr-type XII NHPP-based SRM, and constructed a
statistical process control chart. Ravikumar and Kantam [35]
also estimated the model parameters in the NHPP-based SRM
with the Burr-type XII with the group data by means of the
least-squares estimation. Islam [16] assumed the Burr-type XII
testing-effort for the NHPP-based SRM with a trend-change
point.

Ahmad et al. [4], [5] assumed a different type of Burr-
type distribution, say, the Burr-type III distribution, to describe
the testing effort for software fault count processes in the
NHPP-based software reliability modeling, and applied it to
the software release problems. Sobhana and Prasad [36] and
Chowdary et al. [9] used the Burr-type III distribution for
the generalized order statistics SRM and the NHPP-based
SRM, respectively, where the fault-detection time-domain data
were analyzed. Sridevi and Rani [37] compared two base-
line models with the Burr-type XII and the Burr-type III
distributions in the NHPP-based modeling framework with
the fault-detection time-domain data. Yet another Burr-type
X distribution was introduced by Sridevi and Akbar [38]
to propose a different NHPP-based SRM, where the same
fault-detection time-domain data as [9], [32] were analyzed.
Recently, Kim [19] introduced the Burr-Hatke-exponential
distribution in the NHPP-based software reliability modeling
and compared it with the common exponential distribution [10]
and the inverse exponential distribution with the fault-detection
time-domain data.

The above references mentioned that different Burr-type
distributions are introduced in different model settings (gen-
eralized order statistics SRM and NHPP-based SRM) and
different software fault count data types (time-domain data and
group data). Unfortunately, it is obvious that no comprehensive
comparison with the existing SRMs was made with different
fault count data types. Imanaka and Dohi [15] compared
the NHPP-based SRM under the Burr-type XII distribution
with the representative 11 NHPP-based SRMs [1], [3], [10]-
[12], [26]-[28], [43], [44] with 8 software fault-count group
data, and further proposed the Burr-type XII regression SRM
modulated by an NHPP when software process metrics data
are given. They concluded that the Burr-type distribution is
quite attractive to represent the software fault-detection time
distribution because the goodness-of-fit performances for the
NHPP-based SRM with Burr-type XII distribution were better
in many cases in terms of the Akaike information criterion
(AIC) and mean squares error (MSE). However, the reference
[15] did not investigate the other Burr-type distributions and
the predictive performances in the future testing period. In this
paper, we develop 7 Burr-type NHPP-based SRMs, including
the Burr-type III, X, and XII distributions, and compare them
with the well-known NHPP-based SRMs under the time-
domain data and group data circumstances. This is the first
comprehensive study to evaluate the Burr-type NHPP-based
SRMs and provides the empirical basis for why the Burr-type



distributions are appropriate to describe the software fault-
detection time distribution.

III. NHPP-BASED SOFTWARE RELIABILITY MODELING
A. Non-homogeneous Poisson Processes

Suppose that the testing phase of a software development
project starts at time ¢ = 0. Let {N(¢),t > 0} be a stochastic
counting process to describe the cumulative number of soft-
ware faults detected by time ¢ (> 0). The stochastic process
N(t) is said a non-homogeneous Poisson process (NHPP), if
the following conditions are satisfied:

° N (O) = O,

o {N(t),t > 0} has independent increment,

o Pr{N(t+ At) — N(t) > 2} = o(At),

o Pr{N(t+ At) — N(t) = 1} = A(t; 0) At + o(At),
where the function A(t; @) is an absolutely continuous (deter-
ministic) function, called the intensity function, 6 is the model
parameter (vector), and o(At) indicates the higher-order term
of the infinitesimal time At, which is given by

o(At)
AtSo At
If N(t) follows an NHPP, the state transition probability,
P,(t) = Pr{N(t) =n|N(0) =0}, which is equivalent to
the probability mass function (PMF), satisfies the Kolmogorov
forward equations;

%Po(t) = —)\(t;e)P()(t), (2)

qa
dt

=0. (1)

P,(t) = At;0)Pr_1(t) = A(t;0)Py(t), n=1,2,--- .
3)
Given the initial conditions; Py(0) =1 and P,(0) =0 (n =
1,2,...), we immediately obtain
A . n
P,(t) = % exp(—A(t;0)) (n=0,1,2,...). @)

From the Poisson nature, we have

o] t
BN = 3P0 = Aw6) = [ Aw0)iz, )
n=0 0
which is called the mean value function and denotes the
expected cumulative number of software faults by time ¢.

B. The Existing NHPP-based SRMs

It is assumed that each software fault is detected at in-
dependent and identically distributed (i. i. d.) random time
with a non-degenerate cumulative distribution function (CDF),
F(t; ) having the parameter «, and that the residual number
of software faults at time ¢ = 0 is a Poisson distributed
random variable with parameter w (> 0). Then the resulting
software fault detection process obeys the NHPP with mean
value function A(t;0) = wF(t; ) with 0 € (w, ). In this
way, the commonly used assumption in software reliability
engineering is that the initial number of residual software
faults in a software system is expected to be finite, i.e.,
limy_yoo A(£;0) = w (> 0).

TABLE I
THE EXISTING NHPP-BASED SRMS.
‘ Models ‘ A(t; 0)
Exponential dist. A(t;0) = wF(t; )
(exp) [10] Ft;a) =1— e %
Gamma dist. At;0) = WFb(ti o)
t cPs? e 8
(gamma) [43], [44] F(t; o) = [, NO) ds
Pareto dist. A(t;0) = wF(t; o)
(pareto) [1] Fta)=1-— (tib)C
.0) — , L (t:0)—F(0s0)
Truncated normal dist. A 0) = v =1 "Foa) )
(s—c)

(tnorm) [28]

Fta) = 217Tb fiooe_ 262 ds
A(t;0) = wF(Int; o)

Log-normal dist.

(Inorm) [3], [28] F(t;a) = \/2171) A e‘%ds
Truncated logistic dist. At;0) = "-’F(ti‘;)
(tlogist) [26] Fta) = {2
Log-logistic dist. A(#0) = wF(In b @)
(llogist) [12] F(t;o) = 1§rb(tz31,>c
Truncated extreme-value max dist. At;0) = w%ﬁ;g}f‘)

(txvmax) [27]

Ft;o)=e ¢ °
A(t;0) = wF(Int; o)
F(t;o) = e~ (5)7°

A(t:6) = w FO =T 5
t—c

Log-extreme-value max dist.
(Ixvmax) [27]

Truncated extreme-value min dist.
(txvmin) [27]

Flt;a) =e™¢ P
At;0)=w(1 - F(—Int; o))
Ft;a) =e ¢ e

(w>0,a>0,b>0,c>0)

Log-extreme-value min dist.
(Ixvmin) [11]

In the classical software reliability modeling, the main re-
search issue was to determine the intensity function A(¢; @) or
equivalently the mean value function A(¢; ) to fit the software
fault count data. Okamura and Dohi [29] implemented the
existing NHPP-based SRMs with 11 software fault-detection
time CDFs in the software reliability assessment tool on
the spreadsheet (SRATS), which includes exponential (exp),
gamma, Pareto, log-normal (Inorm), log-logistic (llogist), log-
extreme-value minimum (Ixvmin), log-extreme-value maxi-
mum (Ixvmax), truncated logistic (tlogist), truncated normal
(tnorm), truncated extreme-value minimum (txvmin), trun-
cated extreme-value maximum (txvmax) distributions. In Table
I, we summarize these 11 NHPP-based SRMs.

C. Parameter Estimation

Maximum likelihood (ML) estimation is a commonly used
technique for the parameter estimation of NHPP-based SRMs.
In ML estimation, the estimates are given by the parameters
maximizing the log likelihood function (LLF). On the other
hand, the LLF value depends on the observed data as well as
the underlying NHPP-based SRMs. In this paper, two types of
data; time-domain data and group data, are considered.

(i) Time-domain data: A set of fault detection times mea-
sured with CPU time is called the (fault-detection) time-
domain data. Suppose that m software faults are detected,
where the time sequence is given by T = {t1,t2,...,tm}.
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Fig. 1. Behavior of cumulative number of software faults with the Burr-type and existing SRMs.

Then, the likelihood function is represented as

m

L(6;T) = exp(—A(tm; 0)) [ [ At 6), 6)
i=1
so that the log likelihood function is written by
InL(0;T) = > InA(t;; 0) — A(tm; 0). (7)
i=1

By maximizing In£(0;T') with respect to 6, we seek the ML
estimate 6.

(ii) Group data: A group data consists of the number
of faults detected in fixed time intervals measured with the
calendar time, (¢;1,t;] (i =1,2,...,m). Each record of the
group data (¢;,n;) is given by a pair of the observation time ¢;
and the cumulative number of software faults detected by time
t;. Then, the likelihood function and log likelihood function
with the group data I = {(¢;,n;),i=1,2,...,m} are given
by

T [ [A(ti;0) — A(ti_q;0)] i
oD };[1 (n; —mn;—1)!
X ei[A(tﬁB)*A(ti_l;G)] (8)

)

m

InL(; 1) = " (n; —ni—1) In{A(t;;0) — A(t;_1;0)}

= In{(ni = ni—1)!} = Atm; 6), )

respectively, where (to,70) = (0,0). Hence the ML estimate
6 is given by the solution of argmaxyInl(6;I).

IV. BURR-TYPE NHPP-BASED SRMs

For a continuous random variable X with the support
(—00,4+00), let F(z;x) and f(z;) be the CDF and
the probability density function (PDF), respectively, where
F(z; ) is an absolutely continuous non-decreasing function
from F(—oo;a) = 0 to F'(oo; ) = 1. For arbitrary a and
b (a <), Pr{fa < X <b} = Fhja) — F(a;&¢) =
f: f(z;a)dz with F(z;a) = [ f(z;a)de and f(z;a) =

dF (z;)/dz. Burr [7] introduced a new family of CDFs
which satisfy the following differential equation;
dF (z; o)
dx
where g(x, F'(x; o)) is an arbitrary positive function with 0 <
F(z;a) < 1. If g(z, F(z;0)) = (b1 + bex + bgacz)_l and
F(xz; ) and 1 — F(x; o) are replaced by f(z) and (by — ),
respectively, with arbitrary constants by, b1, b2 and b3, then Eq.
(10) is reduced to the differential equation for the well-known
Pearson system;
df(r:a) _ fria)(by— ) an
dx (bl + box + b31‘2) ’

= F(z;a)(1 - F(z;a))g(z, F(z; ), (10)

which leads to many popular CDFs, such as Pearson-type
I (beta distribution), Pearson-type III (gamma distribution),
Pearson-type VIII (power distribution), Pearson-type X (ex-
ponential distribution) and Pearson-type XI (a particular class
of Pareto distribution).

Burr [7] considered a special case of g(z, F(z; o)) =
g(z; a). By solving Eq.(10), we obtain

1
[e oGz 1]

F(z; o) = (12)
It should be noted that the selection of the function g(z; )
should make the CDF F'(x; av) increase monotonously from 0
to 1 within the specified time x. The above statement is often
called the Burr hypothesis. Finally, Burr [7] derived 12 Burr-
type distributions I~XII by considering 12 kinds of g(z; )
functions. Table II lists the Burr-type distributions proposed
in [7].

As mentioned in Section II, the Burr-type III, X, and
XII distributions were applied to describe the software fault-
detection time distribution in the past literature, where these
CDFs have positive support (0,00). In other words, from
Table II, it is immediate to see that the Burr-type I, IV,
V, and XI distributions are not appropriate in modeling the
software fault-detection time. In addition to the Burr-type III
distribution [4], [5], [9], [36], [37], the Burr-type X distribution
[38], the Burr-type XII distribution [2], [6], [16]-[18], [32]—
[35] with the positive support X € (0,00), it is possible to



TABLE II
BURR-TYPE DISTRIBUTIONS.

Type | CDF Domain of
I F(z; o (0,1)

)il F(z; a) (e’T + 1)~ (—00, +00)
il F(z;0) = (14 ()~ “) (0, +00)

V| P = (e -2/ +1) 0, ¢)

\ F(z;o) = (ae”tne 4 1)7 (—m/2,7/2)
VI | F(z;a) = (ae=om@ 41)~° (—o0, +00)
VI | F(z;a) = 27° (1 + tanh (2))? (—o00, +00)
VII | F(z;a) = (arctan(e®)2/m)° (—00, +00)
X | Flzjo) = 172( ((1+e$)”71) +2)71 (—00, +00)
X F(z;a) = (1 - e*(T)z)b (0, 400)

XI F(z;a) = (z — (1/27) sin 27z)® (0,1)

X0 | Flz;a)=1—(1+a%)"° (0, +00)

(w>0,a>0,b>0,c>0)

transform the CDF with support (—oo, +00) to the log Burr-
type distributions with the support X € (0,00) by taking
exp(X). So, we consider the log Burr-type II, VI, VII, VIII,
IX distributions to represent the mean value function of the
NHPP-based SRM:

A(t;0) = wF(Int; o). (13)
The underlying idea comes from the log-normal NHPP-based
SRM [3], [28] and the log-logistic NHPP-based SRM [12]. In
fact, it is known that the logarithmic Burr-type II distribution is
reduced to the log-logistic distribution [39]. Table III presents
the Burr-type NHPP-based SRMs considered in this paper,
where we applied a generalized Burr-type XII distribution by
introducing an additional scale parameter d. That is to say, if
d = 1, then the Burr-type XII distribution in Table III becomes
the original form in Table II.

TABLE III
BURR-TYPE NHPP-BASED SRMS.
Models CDF A(t; 0)
Burr-type 111 Ft;a) = (14 (t/d)~ ‘1) wF(t; o)
Log Burr-type VI F(t;a) = (ae=cih(t/d) 4 1) wF(logt; )
Log Burr-type VII | F(t;a) = 27% (1 4 tanh (t/d))b wF (logt; o)
Log Burr-type VIII | F(t; ) = (arctan(e (et/d) 2/7r) wF(logt; o)
Log Burr-type IX Ftia)=1—2 ( ((1 + ef/d) — 1) + 2)71 wF(logt; o)
Burr-type X F(t;a) = ( — e (/? ’ wF(t; o)
3

Burr-type XII Ftia) =1— <ﬁ) wF(t; o)

(w>0,a>0,b>0,c>0,d>0)

V. PERFORMANCE COMPARISONS
A. Data Sets

In numerical experiments, we analyze 8 software fault-
detection time-domain data (TDS1~TDS8) and 8 group data
(GDS1~GDS8) in Table IV and Table V, respectively. These
were observed in actual software development processes, and
were analyzed in the past literature.

TABLE IV
TIME-DOMAIN DATA SETS.

Data | No. faults Source

TDS1 54 SYS2 [25]

TDS2 38 SYS3 [25]

TDS3 136 SYS1 [25]

TDS4 53 —

TDS5 73 —

TDS6 38 —

TDS7 41 S27 [25]

TDS8 101 —

TABLE V
GROUP DATA SETS.

Data | No. faults | Testing days Source
GDS1 54 17 SYS2 [25]
GDS2 38 14 SYS3 [25]
GDS3 120 19 Release2 [41]
GDS4 61 12 Release3 [41]
GDS5 9 14 NASA -supported project [40]
GDS6 66 20 DS1 [30]
GDS7 58 33 DS2 [30]
GDS8 52 30 DS3 [30]

B. Goodness-of-fit Performances

We investigate the goodness-of-fit of our 7 Burr-type NHPP-
based SRMs and the existing 11 NHPP-based SRMs in SRATS
[29]. Based on the software fault counts experienced in the
past, we seek the ML estimate 0 and maximize the log
likelihood function In £(60;T') or In £(0; I'). Then the Akaike
information criterion (AIC) and the mean squares error (MSE)
are defined by

AIC = —2In L(6; T or I) + 2 x (the number of parameters)

(14)
and
~ ni i — A ti;é 2
MSE(G ) — VI (- A(t:0)) s
m
R ™ (i — A(t;;0))?
MSE(8; I) = \/le(nm Gs: 6) (16)

The smaller AIC/MSE is the better SRM in terms of the
goodness-of-fit to the underlying fault count data.

Figure 1 illustrates the mean value functions and the cu-
mulative number of software faults detected in TDS1 and
GDS1. The best SRMs with minimum AIC were selected
from the 7 Burr-type NHPP-based SRMs (red curve) and the
existing NHPP-based SRMs in SRATS (orange curve). At the
first look, both modeling frameworks showed almost similar
behavior. We present the best AIC results for the time-domain
data and group data in Table VI and Table VII for a more
accurate comparison, respectively, where the bold font marks
the best SRM with minimum AIC in each data set. From
Table VI, it can be seen that in the half of time-domain data
sets (TDS1, TDS2, TDS4, TDSS), our Burr-type NHPP-based



SRMs could provide the better goodness-of-fit performances
than the existing NHPP-based SRMs in SRATS. The MSE
with the ML estimate was also compared as a distance metric
between the mean value function and the underlying fault
count data, while the AIC denotes an approximate distance
between our assumed SRM and the real stochastic process
behind the data. It is found that the Burr-type NHPP-based
SRMs gave the smaller MSE than the existing NHPP-based
SRMs in SRATS in TDS2, TDS4, TDSS5, and TDS8 as well.

In the group data sets, the Burr-type NHPP-based SRMs
provided the smaller AIC in DS5 and DS7, and the smaller
MSE in GDS7 and GDS8. Note that the significant difference
in terms of AIC can be considered as greater than 2 from the
definition of AIC. In the group data analysis, the remarkable
difference between the Burr-type NHPP-based SRM and the
existing NHPP-based SRM was not observed in GDS1, GDS3,
GDS4, GDS7, and GDSS8. On the other hand, in GDS2 and
GDS6, we notice the difference in AIC between the best
Burr-type NHPP-based SRM (Log Burr-type IX) and the
best SRATS SRM (Ixvmax) was greater than 2 in GDS2
and GDS6. Inversely, in GDSS5, the best SRATS SRM (exp)
gave a better goodness-of-fit than the best Burr-type NHPP-
based SRM (Log Burr-type IX) significantly. These results
reinforce the conclusion by Imanaka and Dohi [15], so that
the Burr-type NHPP-based SRM does not always outperform
the existing NHPP-based SRMs but provides better goodness-
of-fit performances in many cases.

In Tables VI and VII, we estimate the mean number
of inherent software faults before software testing, w, and
calculate the absolute difference between the total number of
software faults (m or n,,) and @ as diff. The smaller diff
implies a more plausible SRM under the assumption that no
software fault was found after the release in all the data sets.
The results tell us that even if some SRMs can guarantee the
minimum AIC and MSE, the corresponding diff is not always
minimized. In TDS3, TDSS5, and TDS7, the Burr-type NHPP-
based SRMs could estimate the number of inherent faults more
accurately than the existing NHPP-based SRMs in SRATS. In
the group data sets, the Burr-type NHPP-based SRMs could
also give more accurate estimates of the number of inherent
faults than the SRATS SRMs in five cases (GDS1, GDS2,
GDS3, GDSS5, and GDS6). Compared with the existing NHPP-
based SRMs, we can conclude that our Burr-type NHPP-based
SRMs are quite attractive in software reliability modeling and
should be competitors with the high potential ability for the
existing NHPP-based SRMs.

C. Predictive Performances

It is worth mentioning that the better goodness-of-fit to the
past observation does not always lead to the better performance
for the future prediction. Since assessing the quantitative
software reliability predicts the fault-free probability during
a future testing/operational period, it is important to inves-
tigate the predictive performance of the Burr-type NHPP-
based SRMs. The predictive performance is measured by the
predictive mean squares error (PMSE) to evaluate the average

distance between the predicted cumulative number of software
faults and its (unknown) realization per prediction length.
Suppose that m or n,, software fault count data is available,
and that the prediction length is given by [ (= 1,2, - -). Then,
we define the PMSE for the fault-detection time-domain data
and the group data by

: VI i A:0))2
PMSE(0;T) — D)
: VI - At 0))
PMSE(§;I) = A z , (18)

where 6 is the ML estimated at time tm.
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Fig. 2. Predictive behavior of cumulative number of software faults with the
Burr-type and existing SRMs in TDSI.



TABLE VI
GOODNESS-OF-FIT PERFORMANCES BASED ON AIC (TIME-DOMAIN DATA).

Data Burr Type SRATS

Set Best Burr AIC w(diff) MSE | Best SRATS AIC w(diff) MSE
TDS1 | Log Burr-type VIII | 896.663 | 241.894 (187.894) | 0.190 Ixvmax 896.666 | 232.175 (178.175) | 0.190
TDS2 | Log Burr-type VIII | 598.122 84.883 (46.883) 0.210 Ixvmax 598.131 82.895 (44.895) 0.211
TDS3 Burr-type X 1939.258 143.726 (4.726) 0.313 Ixvmin 1938.160 | 172.526 (34.526) | 0.220
TDS4 Burr-type 11 759.704 54.017 (1.017) 0.241 pareto 759.756 53.201 (0.201) 0.267
TDS5 Burr-type X 757.119 84.808(11.808) 0.481 exp 757.869 95.960 (22.960) 0.510
TDS6 | Log Burr-type VIII | 722.397 66.989(28.989) 0.235 Ixvmax 721.928 51.561 (13.561) 0.195
TDS7 | Log Burr-type VII | 1008.220 95.007 (54.007) 0.382 Ixvmax 1008.220 95.796(54.796) 0.382
TDS8 Burr-type XII 2506.026 | 214.184(113.184) | 0.672 pareto 2504.170 | 211.202 (110.202) | 0.685

TABLE VII
GOODNESS-OF-FIT PERFORMANCES BASED ON AIC (GROUP DATA).

Data Burr Type SRATS

Set Best Burr AIC w(diff) MSE | Best SRATS AIC w(diff) MSE
GDS1 | Log Burr-type IX | 72.500 59.288 (5.288) | 0.474 llogist 73.053 60.651 (6.651) 0.492
GDS2 | Log Burr-type IX | 59.459 | 67.468 (29.459) | 0.479 Ixvmax 61.694 74.334 (36.334) | 0.481
GDS3 | Log Burr-type VI | 85.873 122.896 (2.896) | 0.403 tnorm 87.267 123.252 (3.252) | 0.569
GDS4 | Log Burr-type VI | 50.600 61.381 (0.381) | 0.165 tlogist 51.052 62.269 (0.269) 0.405
GDSS5 | Log Burr-type IX | 30.231 30.359 (21.359) | 0.071 exp 29911 39.052 (30.052) | 0.092
GDS6 | Log Burr-type IX | 103.459 71.982(5.983) 1.022 Ixvmax 108.831 | 134.936 (68.936) | 1.061
GDS7 Burr-type III 124767 | 58.178 (0.178) | 0.257 txvmin 123.265 58.037 (0.037) 0.253
GDS8 | Log Burr-type IX | 117.234 | 52.516 (0.516) | 0.532 llogist 117.470 52.459 (0.459) 0.532

In our experiments, we set three observation points; 20%,
50%, and 80% of the whole data set, and predict the cumu-
lative number of software faults during the remaining period,
where the prediction length becomes shorter as the observation
point is larger. In Figs. 2 and 3, we show the examples of pre-
dictive behavior of the cumulative number of software faults
with the Burr-type and existing SRMs in TDS1 and GDSI,
respectively, where the dotted line denotes the prediction point.
In these figures, we plot the best predictive models with the
minimum PMSE. In Fig. 2, since the underlying fault-detection
time behaves like an exponential curve, both SRMs; the Burr-
type NHPP-based SRM and the SRATS SRM, could show a
similar prediction trend. On the other hand, the group data
in Fig. 3 represented the S-shaped curve, and both SRMs
resulted in the miss-prediction in the early testing phases,
like 20% and 50% observation points. These poor predictive
performances are caused by the trend change in the future.
More specifically, In Fig. 3 (a), both SRMs could not predict
the S-shaped increasing trend. In Fig. 3 (b), they failed to
predict the 3 steps increasing trend. From these results, we
can understand that the prediction of the future unknown
trend change is essentially difficult, even though the prediction
length is relatively short.

Tables VIII and IX present the comparison results on
the PMSE in time-domain data sets and group data sets,
respectively, where we select the best SRM with the smallest
PMSE from the Burr-type NHPP-based SRMs and the SRATS
SRMs. In the time-domain data, it is seen that the Burr-type

NHPP-based SRMs could not guarantee the smaller PMSE
than SRATS SRMs in most cases of early and middle testing
phases. However, when the testing phase is later (80%), the
Burr-type NHPP-based SRMs provided the smaller PMSE in
a total of 6 cases out of 8 cases. In the group data analysis,
regardless of the prediction length, the Burr-type NHPP-based
SRMs gave the better predictive performances than the SRATS
SRMs in at least half of the data sets.

Except in the 80% observation of Table VIII, it should be
noted that the best SRM with the minimum PMSE depends
on the data sets in both modeling frameworks; Burr-type and
SRATS. Of course, the best SRM with the minimum PMSE
cannot be known in advance at each observation point. In
this sense, we have to say that the comparison in Tables VIII
and IX is not feasible. In Tables X and XI, we compare the
predictive performances of SRMs with the minimum AIC at
each observation point in the time-domain data sets and group
data sets, respectively. In the time-domain data, we can observe
that when the testing phase is early (20%), the existing NHPP-
based SRMs could show the smaller PMSE than the Burr-type
NHPP-based SRMs in half of 8 cases (TDS1, TDS2, TDS5,
and TDS6), and the Log Burr-type IX SRM outperformed the
SRATS SRMs in the only TDS3. When the testing phase is
middle (50%), we found that Burr-type NHPP-based SRMs did
give neither the minimum AIC nor minimum PMSE. However,
this worse trend can be improved in the later stage of the
testing phase, so that the Burr-type NHPP-based SRMs could
show the best goodness-of-fit performance in the observation
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Fig. 3. Predictive behavior of cumulative number of software faults with the
Burr-type and existing SRMs in GDS1.

phase and ensure the minimum PMSE in the future prediction
phase in TDS1, TDS3, and TDSS.

In the group data of Table XI, it can be observed that the
Burr-type NHPP-based SRMs provided both the smallest AIC
and smallest PMSE at the same time in some cases; i.e., one
case out of 8 data sets in (i), 5 cases out of 8 data sets in (ii)
and (iii). These results confirm that the Burr-type NHPP-based
SRMs have the higher prediction ability, especially in the late
phase of software testing. In both time-domain and group data
sets, when we compare the PMSE between the best Burr-type
NHPP-based SRM and the best SRATS SRM, we find out
that our Burr-type NHPP-based SRMs could guarantee smaller

TABLE VIII
PREDICTIVE PERFORMANCES BASED ON PMSE (TIME-DOMAIN DATA).

(i) Prediction from the 20% observation point

Data Burr Type SRATS
Set Best Burr PMSE | Best SRATS | PMSE
TDS1 Burr-type III 0.293 Ixvmax 0.332
TDS2 Burr-type XII 2.816 tnorm 1.129
TDS3 Log Burr-type VI 0.506 Ixvmax 0.538
TDS4 Burr-type III 1.145 Inorm 1.120
TDS5 | Log Burr-type VII | 13.626 exp 12.616
TDS6 Burr-type XII 1.253 exp 1.595
TDS7 | Log Burr-type VII 1.558 Ixvmax 0.959
TDS8 Burr-type 111 5.379 Ixvmax 4.724

(ii) Prediction from the 50% observation point
TDS1 Log Burr-type VI 0.577 pareto 0.459
TDS2 Log Burr-type IX 1.986 tlogist 0.841
TDS3 | Log Burr-type VII 2.871 pareto 0.409
TDS4 | Log Burr-type VII 3.620 tlogist 1.888
TDS5 | Log Burr-type VIII | 2.546 llogist 2.229
TDS6 | Log Burr-type VIII | 0.455 Ixvmax 0.706
TDS7 Burr-type IX 22.325 exp 13.943
TDS8 Burr-type VI 2.689 Ixvmax 24.711

(iii) Prediction from the 80% observation point
TDS1 | Log Burr-type VIII | 0.661 Ixvmax 0.664
TDS2 | Log Burr-type VIII | 0.240 Ixvmax 0.241
TDS3 | Log Burr-type VII 0.573 Ixvmax 0.560
TDS4 Log Burr-type X 0.468 txvmin 0.570
TDS5 | Log Burr-type VII 1.450 Ixvmax 1.128
TDS6 Burr-type 111 0.448 Ixvmax 0.449
TDS7 Burr-type XII 0.908 Ixvmax 0.972
TDS8 Burr-type XII 1.416 Ixvmax 1.585

PMSEs than the SRATS SRMs in many cases; half cases in
(i) and (ii), 6 cases in (iii) in Table X, 5 out of 8 data sets in
(i), 7 out of 8 data sets in (ii) and 6 out of 8 sets in Table XI.
We never claim here that the Burr-type NHPP-based SRMs
are always better than the existing SRMs in the literature.
However, we emphasize that the Burr-type NHPP-based SRMs
should be the possible candidates in selecting the best model
in terms of goodness-of-fit and predictive performances. Also,
another new finding is that the logarithmic Burr-type NHPP-
based SRMs gave better goodness-of-fit and prediction results
in many cases than the existing Burr-type III, X and XII SRMs.
This would be useful to assume the competitors in SRMs.

D. Software Reliability Assessment

Finally, we evaluate the software reliability quantitatively
with our Burr-type NHPP-based SRMs and compare them with
the existing NHPP-based SRMs in SRATS. Let R(z | ¢) be
the software reliability with the software operational period
(prediction length) x = t,,4; — t,, or [ when the software
is released at time t = t,,,. Since R(z | t) is defined as the
probability that software is fault-free during the time interval
(t,t + x], it is easily obtained that

R(z|t) = Pr(N(t+x)—N()=0]|N(t)=m)

0 t
— ep(—[Alt+a:0) —AEO)),  (19)



TABLE IX

PREDICTIVE PERFORMANCES BASED ON PMSE (GROUP DATA).

TABLE XI
PREDICTIVE PERFORMANCES BASED ON AIC (GROUP DATA).

(i) Prediction from the 20% observation point
Data Burr Type SRATS
(i) Prediction from the 20% observation point Set Best Burr AIC PMSE | Best SRATS AIC PMSE
Data Burr Type SRATS GDS1 | Log Burr-type VIII 12.737 4.383 exp 11.085 6.241
GDS2 Log Burr-type IX 12.865 1.190 Ixvmax 12.865 1.441
Set Best Burr PMSE | Best SRATS | PMSE GDS3 | Log Burr-type IX | 18976 | 4.878 p 18.442 | 10.149
GDS1 Burr-type XII 3.692 gamma 3.706 GDS4 | Log Burr-type VII | 12.640 | 8.197 oxp 11,669 | 3.436
GDS2 Log Burr-type VI 0.806 Ixvmax 1.441 GDS5 | Log Burr-type VIL | 8.000 | 0.501 exp 7386 | 0432
GDS3 Log Burr-type IX 4.878 gamma 6.738 GDS6 | Log Burr-type VII 20.744 4.715 lnorm 20.660 5.147
GDS7 Log Burr-type III 17.340 6.566 txvmin 16.958 6.600
GDS4 Burr-type XII 8.087 exp 3.436 GDS8 Burr-type X 8614 | 8313 | xvmin 8614 | 4032
GDS5 | Log Burr-type VII 0.501 pareto 0.432 (i) Prediction from the 50% observation point
GDS6 Log Burr-type IX 1.523 tlogist 2.340 gg:; ]]:Og léurr-lype g ;g-gg 2?‘3 llx\’min g?-gg? ‘2‘-2‘3*2
og Burr-type . . Xvmax . K
ggg; LO% Burr-typ;:ﬂ\I/III g‘: (1); eXp 33;; GDS3 | Log Burr-type VI | 48.466 | 6.776 exp 49313 | 9316
urr-type K txvmin 2 GDS4 | Log Burr-type IX | 31.353 | 11.040 tlogist 30.560 | 22973
(i) Prediction from the 50% observation point GDS5 | Log Burr-type IX 17.787 | 0.181 exp 17.365 | 0.194
- : GDS6 Log Burr-type IX 38.584 5.201 Ixvmax 40.521 5.634
GDS1 Burr type 11 1.546 thgl,St 3.769 GDS7 Log Burr-type IX 71.671 1.094 Ixvmax 72.390 1.096
GDS2 Burr-type XII 2.238 txvmin 1.835 GDS8 | Log Burr-type VI | 65.543 | 1.499 txvmin 65835 | 1.306
GDS3 | Log Burr-type VIII | 5.353 Ixvmax 6.832 (iii) Prediction from the 80% observation point
GDS4 | Log Burr-type VIIT | 6.461 exp 3.522 ggg; LogB Bur:-typeD;”H ggggg 3§§2 ;xvmin ggggé (1)291"7)
urr-type . . Xvmax . .
GDS5 | Log Burr-type IX 0.181 €Xp 0.194 GDS3 | Log Burr-type VI | 73.981 | 0.708 tXvmin 75292 | 0.887
GDS6 Log Burr-type IX 5.201 pareto 5.496 GDS4 | Log Burr-type VI | 43.120 | 0.507 txvmin 42540 | 0.828
GDS7 Burr-type 111 1.088 Ixvmax 1.096 gng Log Burr-type 1X ;g;g 32;; : exp gg?; g-;gg
- . D. Burr-type XII . . Xvmax 17 .
GDS8 | Log Burr-type VI | 1499 txvmin | 1.306 GDS7 | Log Burr-type IX | 112.543 | 3.603 tvmin | 112.836 | 0.818
iii) Prediction from the 80% observation point GDSS | Log Burr-type Il | 100.325 | 0.834 tlogist 100.325 | 0.855
GDS1 | Log Burr-type VIII | 0.865 Inorm 0.531
GDS2 Log Burr-type VI 0.292 exp 0.295
GDS3 Burr-type XII 0.653 tnorm 0.230
GDS4 Burr-type X 0.507 tnorm 0.589
GDS5 Log Burr-type VI 0.169 tnorm 0.205
GDS6 Burr-type 111 0.523 Inorm 0.741 . .
GDS7 Burr-type X 1530 xvmin 0.818 where m is the cumulative nu.mber of software faults detected
GDS8 | Log Burr-type VIII | 0.325 Txvmax 0.325 up to time ¢ in the time-domain data (m in Eq.(19) is replaced
Ny, in the group data). In our example, we suppose tha
by the group data). I pl ppose that
the prediction length z is equivalent to the testing length
experienced before, say, t = x.
TABLE X Tables XII and XIII present the quantitative software relia-

PREDICTIVE PERFORMANCES BASED ON AIC (TIME-DOMAIN DATA).

(i) Prediction from the 20% observation point

Data Burr Type SRATS

Set Best Burr AIC PMSE | Best SRATS AIC PMSE
TDS1 Burr-type X 141.639 10.683 exp 141.609 0.865
TDS2 Burr-type XII 91.195 2.816 tnorm 84.722 1.129
TDS3 | Log Burr-type IX 313.458 2.825 llogist 313.745 3.089
TDS4 Log Burr-type IX 126.424 1.197 exp 121.858 2.993
TDS5 | Log Burr-type IX 114.575 | 25.328 exp 113.372 12.616
TDS6 Burr-type X 129.216 2.757 Ixvmax 128.656 2.250
TDS7 | Log Burr-type VIII 189.539 1.605 exp 187.583 4.763
TDS8 | Log Burr-type IX 441.559 | 18.276 exp 440.510 41.053

(ii) Prediction from the 50% observation point
TDSI Burr-type X 403.494 2.400 exp 403.368 1.890
TDS2 | Log Burr-type VIII | 256.977 3.231 exp 256.074 0.841
TDS3 | Log Burr-type IX 861.677 3.951 llogist 861.949 3.704
TDS4 | Log Burr-type IX 334.737 4.770 exp 334.762 1.913
TDS5 | Log Burr-type IX 364.639 2.822 exp 363.831 3.128
TDS6 | Log Burr-type VIII | 344.810 0.455 Ixvmax 344.604 0.706
TDS7 Burr-type X 447.125 | 33.358 tlogist 445.247 | 412.610
TDS8 Burr-type X 1094.480 | 55.801 exp 1092.710 | 66.558
(ili) Prediction from the 80% observation point

TDS1 | Log Burr-type VIII | 691.675 0.661 Ixvmax 691.677 0.664
TDS2 | Log Burr-type VIII 443.895 0.240 Ixvmax 443.891 0.241
TDS3 Log Burr-type IX 1478.400 | 0.921 llogist 1478.500 0.943
TDS4 Log Burr-type X 566.040 0.468 exp 565.497 0.570
TDS5 | Log Burr-type IX 577.096 1.907 llogist 577.358 1.740
TDS6 | Log Burr-type VII 553.819 0.751 Ixvmax 553.472 0.449
TDS7 | Log Burr-type IX 770.108 1.272 exp 769.836 1.366
TDS8 Burr-type 11T 1887.900 | 2.534 pareto 1889.040 2.536

bility, where we assume the Burr-type NHPP-based SRM and
the SRATS SRM with the minimum AIC, in the fault-detection
time-domain and group data sets, respectively, where the bold
font denotes the case with greater reliability estimate. Looking
at these results, it is seen that our Burr-type NHPP-based
SRMs could show larger software reliability estimates than
the existing NHPP-based SRMs in the half of time-domain
data sets and 5 out of 8 group data sets. This feature tells
us that the Burr-type NHPP-based SRMs tend to make more
optimistic decisions in software reliability assessment than the
SRATS SRMs. It is worth noting in all the data sets that
after each observation point, software faults were additionally
detected as the ex-post results. Hence, the optimistic reliability
estimation is not preferable. Figure 4 (a) and (b) show the
software reliability estimates with the Burr-type NHPP-based
SRM and the SRATS SRM in TDS1 and GDSI, respectively.
In both cases, the software reliability values dropped down to
zero level rapidly, but two NHPP-based SRMs showed similar
reliability values as well. From these results, we find that both
SRMs gave the false alarm to release the current software at
respective observation points and requested more testing to
attain the requirement level of software reliability.



TABLE XII
SOFTWARE RELIABILITY ASSESSMENT WITH THE BEST AIC
(TIME-DOMAIN DATA).

Burr Type SRATS

Best Burr Reliability | Best SRATS | Reliability
TDS1 | Log Burr-type VIII | 2.631E-06 Ixvmax 2.674E-06
TDS2 | Log Burr-type VIII | 3.687E-03 Ixvmax 3.751E-03
TDS3 Burr-type X 4.592E-05 Ixvmin 2.516E-10
TDS4 Burr-type III 4.573E-01 pareto 1.000E-00
TDSS5 Burr-type X 1.035E-05 exp 2.596E-08
TDS6 | Log Burr-type VIII | 3.283E-04 Ixvmax 4.694E-03
TDS7 | Log Burr-type VII | 2.453E-04 Ixvmax 2.398E-04
TDS8 Burr-type XII 8.971E-06 pareto 7.736E-06

TABLE XIII
SOFTWARE RELIABILITY ASSESSMENT WITH THE BEST AIC (GROUP
DATA).
Burr Type SRATS

Best Burr Reliability | Best SRATS | Reliability
GDS1 | Log Burr-type IX | 1.065E-02 llogist 4.152E-03
GDS2 | Log Burr-type IX | 1.353E-05 Ixvmax 7.236E-05
GDS3 | Log Burr-type VI | 3.751E-02 tnorm 3.865E-02
GDS4 | Log Burr-type VI | 7.119E-01 tlogist 2.816E-01
GDS5 | Log Burr-type IX | 6.548E-03 exp 9.832E-04
GDS6 | Log Burr-type IX | 1.928E-08 Ixvmax 1.939E-07
GDS7 Burr-type III 8.667E-01 txvmin 9.633E-01
GDS8 | Log Burr-type IX | 6.679E-01 llogist 6.373E-01

VI. CONCLUSIONS

In this paper, we have developed the Burr-type NHPP-
based SRMs and compared them with the existing SRMs in
the past literature in terms of goodness-of-fit and predictive
performances. Throughout numerical experiments with 8 fault-
detection time-domain data sets and 8 group data sets, which
were observed in actual software development projects, we
have confirmed that our Burr-type NHPP-based SRMs could
show the better performances in many cases than the existing
11 NHPP-based SRMs in SRATS. More specifically, the Burr
type NHPP-based SRMs have provided lower AICs in most
data sets (10 out of 16 cases on AIC and MSE) and lower
PMSE:s in the half of group data sets used in the analysis.
Our results suggest that the Burr-type NHPP-based SRMs are
quite attractive SRMs to describe the software fault-detection
processes and have a higher potential in goodness-of-fit and
predictive performances. This fact has not been known during
the last four decades.

In the future, it is beneficial to implement the Burr-type
NHPP-based SRMs on the well-established software reliability
assessment tool. Although SRATS [29] contains 11 well-
known NHPP-based SRMs, the main feature is to guarantee
the global convergence of model parameters in computing
the ML estimates, where the EM (Expectation-Maximization)
algorithms are implemented for the respective SRMs. In order
to implement the reliable and automated ML prediction for
the Burr-type NHPP-based SRMs, we need to design the EM
algorithms for our 7 Burr-type NHPP-based SRMs. In addition
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Fig. 4. Predictive software reliability assessment with the best Burr-type and
SRATS NHPP-based SRMs.

to the logarithmic Burr-type NHPP-based SRMs, it is pointed
out that the truncation at the origin enables us to apply the Burr
VI, VII, VIII, IX distributions with the support (—oo, +00).
In the subsequent paper, we will investigate the goodness-of-
fit and predictive performances for such truncated Burr-type
NHPP-based SRMs.
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